Как проверить lm317 мультиметром ?
Мультиметром микросхемы проверить нельзя, так как это не транзистор. Что-то протестировать между контактами конечно можно, но это не гарантирует исправность микросхемы, так как она содержит большое количество различных радиоэлементов (транзисторов, резисторов и др.), которые не соединены с выводами напрямую и не «прозваниваются». Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки, . Стенд должен представлять собой простейший стабилизатор (пару конденсаторов и резисторов).
Читать также: Как измерить диаметр проволоки
https://youtube.com/watch?v=qLMRwLExpRQ
Типы стабилизаторов
15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.
На данный момент есть несколько видов стабилизаторов напряжения и тока:
- линейные до 10А и входным напряжением до 40В;
- импульсные с высоким входным напряжением, понижающие;
- импульсные с низким входным напряжением, повышающие.
На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам. В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для питания светодиодов от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.
Про все способы питания светодиодов читайте в статье «Как подключить светодиод к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.
По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.
Корпус для блока питания
В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.
К тому же вы сразу убьете двух зайцев – получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто – смонтировать на радиаторе термовыключатель, который будет управлять кулером.
Сбор аппарата
Когда схема проектирования выбрана и подготовлены все необходимые запчасти, можно смело приступать к созданию стабилизатора тока на lm317. Процесс производства, схема подключения должна осуществляться таким образом:
- Монтируется подобранный вид трансформаторного агрегата.
- Производится сбор каскадной схемы и выпрямительного оборудования.
- Спаиваются все полупроводниковые светодиоды.
- Производится определение выводов на системе. Их насчитывается всего три: вес, выход, вход. Чтобы в процессе не запутаться, нужно обозначить параметры на элементах соответствующими цифрами, от 1 до 3.
- Переверните агрегат таким образом, чтобы обозначенная вами нумерация имела начало с левой стороны.
- Проведите регулировку напряжения, стабилизируя параметры. Для этого минус поддайте на вывод «2» одновременно снимая настроенное значение интенсивности тока с третьего элемента.
- Исходя из выбранной вами схемы, осуществите монтаж остальных запчастей и поместите их в прочный пластиковый или алюминиевый корпус.
Форма изделия может быть различной, здесь все зависит от предпочтений пользователя и размерных параметров составляющих деталей.
Так выглядит самодельный СП в собранном виде
Если грамотно подобрать схему, следовать правилам подключения и производить процесс поэтапно, в результате может выйти качественный стабилизатора тока на lm317 микросхеме. Данный прибор послужит незаменимым агрегатом в каждой «домашней» лаборатории, специализированной на создании электротехнических устройств.
ВИДЕО: Самодельный стабилизатор напряжения для LED/светодиодов
https://youtube.com/watch?v=XokdF6EjjlM
Схемы линейных устройств
Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.
Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.
Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.
Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.
Каждый вывод микросхемы имеет свое предназначение:
- ADJUST. Ввод для регулирования выходного напряжения.
- OUTPUT. Ввод для формирования выходного напряжения.
- INPUT. Ввод для подачи питающего напряжения.
Технические показатели стабилизатора:
- Напряжение на выходе в пределах 1,2–37 В.
- Защита от перегрузки и КЗ.
- Погрешность выходного напряжения 0,1%.
- Схема включения с регулируемым выходным напряжением.
↑ Настройка зарядного устройства
Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась. Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает. Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет. Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.
Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.
Мощные аналоги LM317T — LM350 и LM338
Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.
Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.
Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.
Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.
Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.
Технические характеристики:
Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.
Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.
Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1
https://youtube.com/watch?v=D8B5zucjF94
Типы стабилизаторов
По способу ограничения силы тока выделяют два типа устройств:
- Линейный;
- Импульсный.
Линейный стабилизатор работает по принципу делителя напряжения. Он выпускает из себя ток заданного параметра, рассеивая избытки в виде тепла. Принцип работы такого прибора можно сравнить с лейкой оснащённой дополнительным сливным отверстием.
Преимущества
- доступная цена;
- простая схема монтажа;
- легко собрать своими руками.
Недостаток — из-за нагрева плохо приспособлен к работе с большой нагрузкой.
Импульсный стабилизатор как овощерезка через специальный каскад нарезает входящий ток, выдавая строго дозированную норму.
Преимущества
- предназначен для высоких нагрузок;
- не греется во время работы.
Недостатки
- требует источника питания для собственной работы;
- создает электромагнитное излучения;
- относительно высокая цена;
- сложен для самостоятельного изготовления.
Учитывая малую силу тока в автомобильных светодиодах можно собрать простой стабилизатор для светодиодов своими руками. Наиболее доступный и простой драйвер светодиодных ламп и лент собирают на микросхеме lm317.
https://youtube.com/watch?v=7YkmFCcqEiU
Простой лабораторный блок питания на LM317
Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.
Печатная плата стабилизатора с регулировкой по напряжению
Скачать печатную плату стабилизатора на LM317
Достоинства данного стабилизатора.
- простота в изготовлении
- надежность
- дешевизна
- доступность компонентов
Недостатки
- низкий КПД.
- необходимость использования массивных радиаторов.
- не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.
Для изготовления данного устройства Вам понадобится:
- Стабилизатор LM317 -1шт.
- Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
- Диод КД522 или аналогичный -1шт.
- Резистор R1 -47ОМ желательно от 1Вт -1шт.
- Резистор R3 220Ом от 0.25 Вт -1шт.
- Переменный резистор линейный — 5кОм -1шт.
- Конденсатор электролитический 1000мФ от 50В -1шт.
- Конденсатор электролитический 100мФ от 50В -1шт.
- Диодный мост током от 5А
Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.
Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.
Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.
Сборка стабилизатора на LM317
Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.
Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.
Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.
На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.
У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.
Готовый блок питания выглядит так.
Простой двух полярный стабилизатор напряжения на LM317.
За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.
Характеристики и достоинства двух полярного стабилизатора
- напряжение стабилизации от 1,2 до 30 В;
- максимальный ток до 5 А;
- используется малое количество элементов;
- простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;
Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.
Онлайн калькулятор lm317, lm350 и lm338
Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).
Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.
Интегральный стабилизатор напряжения LM317. Описание и применение
Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.
Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.
На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.
Технические характеристики:
- Напряжение на выходе стабилизатора: 1,2… 37 вольт.
- Ток выдерживающей нагрузки до 1,5 ампер.
- Точность стабилизации 0,1%.
- Имеется внутренняя защита от случайного короткого замыкания.
- Отличная защита интегрального стабилизатора от возможного перегрева.
Мощность рассеяния и входное напряжение стабилизатора LM317
Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.
https://youtube.com/watch?v=4YRK1XJ1w88
Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.
Цена: 3400.00 руб.
Цена: 2700.00 руб.
Цена: 260.00 руб.
Цена: 7000.00 руб.
Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.
При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.
Подбор сопротивления для стабилизатора LM317
Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:
R1 + R2 + R3 = Vo / 0,008
Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).
Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.
Стабилизация и защита схемы
Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.
Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.
Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.
Обратите внимание
Для облегчения расчета параметров стабилизатора существует специальный калькулятор:
https://youtube.com/watch?v=qtFWSEv1JoE
https://youtube.com/watch?v=oK2gHEAY4Io
https://youtube.com/watch?v=0zNDV-Sr3UU
↑ Режим зарядки по току
Мне позвонил друг и сказал, что ему нужно зарядное устройство к шуруповерту на дачу. C его слов, аккумуляторов в батарее 10 штук емкостью 1400 мА-час. Значит, требуется заряжать батарею 12 Вольт. Аккумуляторы никель-кадмиевые, для них возможны три режима зарядки: «А» — медленный, током 0,1 от ёмкости, время зарядки 14-16 часов; «Б» — сверхбыстрый, током от 1 до 4 ёмкости, время порядка 1 часа; «В» — ускоренный, током примерно 0,25 от ёмкости, время зарядки 4-6 часов. На мой взгляд, вариант «А» слишком медленный, пока батарея зарядится, или желание работать пропадет, или будет пора уезжать.
Вариант «Б» рискован, велика вероятность взрыва или выхода из строя батареи, для предотвращения этого нужен контроль за температурой каждого элемента, схема должна быть сложной, лучше на микроконтроллере, для него придется писать и отлаживать программу, далеко не все аккумуляторы могут выдержать такой режим, особенно герметичные.
Остается режим «В» — вечером батарея ставится на зарядку, утром аккумуляторы полностью заряжены, заряд полный, вероятность проблем минимальна.
Анализ промышленных схем удивил. В них обычно нет стабилизации тока, ограничение происходит за счет сопротивления вторичной обмотки питающего трансформатора. Значит при отклонении сетевого напряжения или не будет полной зарядки, или ток значительно возрастет. У нас ток зарядки будет стабилизирован
на заданном уровне, что полностью избавляет от указанных недостатков.
Зарядное на LM317, усиленное транзистором с защитой от КЗ и переполюсовки
На одной из страниц мастерской, я описывал простенькое зарядное устройство на LM317 и хочу его немного совершенствовать. Данное зарядное устройство должно заряжать 3 LI-Ion аккумулятора напряжением до 12,6В, должно уметь держать ток в заданных параметрах, а так же уметь защищать зарядку от коротких замыканий и переполюсовки. По началу я хотел немного доделать зарядку, но в наличии LM на 1,5А не было и пришлось ставить LM317LZ на 100мА, что кардинально изменило всю схему.
Схема зарядного устройства на LM317LZ усиленная транзистором и с защитой от КЗ и переполюсовки
Основной блок собран на LM317LZ усиленный PNP транзистором типа КТ835. Когда через R3 проходит ток порядка 10 мА, отрывается транзистор Q1 и основной ток течет через него. Резисторами R5R8R10 выставляется напряжение 12,6В.
На транзисторном каскаде на Q4Q5 собрано ограничение тока. Когда падение на R13 доходит до 0,6В Q5 открывается и открывает Q4 шунтируя управляющую ножку LM317LZ. Ток рассчитать можно по формуле R13=0,6/Iнаг. Ток кстати может быть абсолютно любой, хоть на 20А. Все зависит от усиливающего транзистора и диодного моста
На полевике Q3 собрана защита от короткого замыкания и защита от переполюсовки, индикация на LED1. Кстати транзисторы использовал Q1-КТ835 Q2-C945 Q3-IRF630 Q4-S9012 Q5-C945
Собрал зарядное, оно заработало сразу. Единственное что не продумал индикацию окончания зарядки, но это в следующий раз.
Фото собранного зарядного устройства на LM317LZ
Печатная плата зарядного устройства на LM317, усиленное транзистором с защитой от КЗ и переполюсовки
Скачать печатную плату Пароль от архива jhg561bvlkm556
Видео зарядного устройства на LM317LZ
Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа
Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства. Зарядное устройство 12В 1.3А
Зарядное устройство 12В 1.3А
Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.
Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна
Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%. На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки. Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку
Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.
Схемы стабилизаторов и регуляторов тока
Существуют как минимум
четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто
своими руками:
- На кренке.
- На паре транзисторов.
- На операционном усилителе.
- На микросхеме импульсного стабилизатора.
Разберем, какие главные
особенности имеет каждая из рассматриваемых модификаций.
На кренке
Для сборки своими
руками простейшего стабилизатора для светодиодов для авто на 12 вольт
потребуются:
- Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
- Резистор на 120 Ом.
- Печатное плато или перфорированная панель.
На изображениях
наглядно представлено расположение основных компонентов схемы простейшего
стабилизатора для светодиодов в авто:
На второй схеме на
входе с АКБ применяется диод выпрямляющего типа 1n4007.
На двух транзисторах
Одним из самых
популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт,
который также собирается своими руками, на сегодня является схема на двух
транзисторах.
Переменное напряжение
номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и,
проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор
параметрического типа VD1 и проходит к резистору R2. Затем с его движка
передается на ключ составного транзистора VT1 VT2. Уровень его открытости
определяется состоянием движка резистора переменного типа R2 – в нижнем
положении регулятора транзисторы перекрыты и напряжение не поступает в
нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы
полностью открыты, напряжение прилагается к нагрузке.
Приведенная модель
стабилизатора напряжения для авто чаще всего применяется для дневных ходовых
огней на базе светодиодов и позволяет успешно подстраивать параметры бортового
тока под характеристики прибора освещения.
На операционном усилителе
Стабилизатор напряжения
на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда
возникает необходимость для его работы в расширенном диапазоне рабочих
параметров. Ниже приведенная схема такого устройства. Главная его особенность в
том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода
стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка
1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%.
Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе
в двойной амплитуде – меньше 60 мкВ.
Среди главных
особенностей его работы выделяются:
- Рабочий интервал температуры – от -20 до +60 градусов.
- Термический дрейф напряжения на выходе – меньше 0,05%.
- Возможность повышения напряжения на выходе до 27-30 вольт.
Для решения последней задачи нужно между выводами «7» и «+25» установить резистор на 200 Ом. Каскад транзистора VT1 выполняет роль динамической нагрузки для VT4 и при этом повышает общий коэффициент усиления. Транзистор П702А можно заменить на аналоги П702 или КТ805, при этом КТ603Г – соответственно на П308 или П309, а также КТ201В и КТ203В — на МП103 либо МП106.
На микросхеме импульсного стабилизатора
Когда от стабилизатора
напряжения для авто требуется высокий коэффициент полезного действия, лучше собрать
своими руками устройство с использование импульсных составляющих. Наиболее
распространенной является ниже представленная схема МАХ771 (или аналогов 770,
772).
Стабилизатор
импульсного типа на выходе имеет мощность в 15 ватт. Элементы цепи R1 и R2
разделяют показатели напряжения на точках выход. В случае, когда оно становится
выше базового, импульсные выпрямители просто снижаются его выходное значение. В
обратном случае прибор будет, напротив, увеличивать данный параметр на выходе.
Монтаж и установка
своими руками импульсного стабилизатора напряжения для светодиодов в авто
разумна, когда его показатель превышает 16 вольт. При возникновении повышенного
падения нагрузки в цепь следует внедрить операционный усилитель.
https://youtube.com/watch?v=2w1tiDYh8DM