Лабораторный блок питания из компьютерного: схема переделки atx на базе tl494 в регулируемый лбп

Маркировка проводов блока питания компьютера

Блок питания подключается к потребителям внутри корпуса компьютера через жгуты с разъемами. Принят стандарт, согласно которому маркировка каждого напряжения питания выполняется проводником с соответствующим цветом изоляции.

Цвет провода Напряжение, В

Чернить 0 В (земля, общий)
Красный +5
Апельсин +3,3
Желтый +12
Белый -5
Синий -12

Помимо цепей питания, жгуты содержат проводники с управляющими сигналами (они находятся на разъеме, идущем на материнскую плату).

Цвет провода Название Функция Уровень напряжения

Зеленый Включить Сигнал с материнской платы — включить включить +5 вольт при отсутствии авторизации, 0 вольт при получении сигнала на подачу напряжения
Серый Potenza_well, Potenza_OK Сигнал на материнскую плату: все напряжения в норме +5 вольт
Альт Пауза Напряжение в режиме ожидания, присутствует всегда, если к источнику питания подано 220 В +5 вольт, используется для питания коммутационных цепей ПК и питания цепи ШИМ внутри блока питания
Коричневый Смысл Регулировка напряжения 3,3 вольта 3,3 вольт

Большая часть цепочек изменений в LBP не понадобится; их нужно будет обрезать во время работы.

Бюджетные модели

5. Element 1502 DD

Бюджетное китайское устройство, которое применяется не только в лабораториях, но и для домашнего применения — тестирования приборов с нестандартным напряжением. Element 1502 DD считается полноценным одноканальным источником питания, погрешность преобразования потоков может достигать 1/100 доли. Станет отличным вариантом при необходимости качественного оборудования и небольшом бюджете.

Средняя стоимость устройства составляет около 1500 рублей.

Element 1502 DD

Плюсы

  • простота эксплуатации;
  • небольшая стоимость;
  • высокое качество деталей и сборки;
  • отличный вариант для ремонта простой электроники.

Минусы

не особо подходит для работы со сложными приборами.

Лабораторный блок питания Element 1502 DD

4. Korad KA 3005 D (30 В, 5 А)

Главным преимуществом данного устройства является наличие цифрового интерфейса, который способен запомнить ряд важных настроек. Индикаторы позволяют установить параметры с наибольшей точностью. Данный блок питания является популярным среди профессионалов и любителей радиоэлектроники. Его приобретение не составит особого труда, так как купить данный аппарат можно как самостоятельно в России, так и заказав из Китая.

Стоимость при покупке составит около 5000-6000 рублей.

Korad KA 3005 D (30 В, 5 А)

Плюсы

  • повышенная мощность;
  • цифровой интерфейс;
  • точность настроек;
  • надежность;
  • удобство эксплуатации;
  • расширенный функционал.

Минусы

значимые минусы отсутствуют.

Лабораторный блок питания Korad KA 3005 D (30 В, 5 А)

3. PS – 1501 A

Устройство китайского производства, отличающееся наличием индикаторов в виде стрелок, один из которых отвечает за измерение вольтажа (0-15), а другой — ампер (1-3). Работа устройства происходит за счет единственного резистора, который расположен на передней панели устройства. Отсутствие цифрового интерфейса не смущает даже профессионалов, а предельная пульсация достигает 3 мВ. Прибор является одноканальным, обладает повышенной точностью, но имеет достаточно значимую погрешность. Наиболее часто применяется в домашних условиях и у частных мастеров.

Стоимость устройства составляет около 1150 рублей.

PS – 1501 A

Плюсы

  • небольшая стоимость;
  • простота управления;
  • надежность конструкции;
  • точность устройства;
  • большой эксплуатационный срок.

Минусы

достаточно значимая погрешность, из-за которой измерения весьма приблизительны.

Лабораторный блок питания PS – 1501 A

2. LW – K – 3010 D

Мощное лабораторное устройство импульсного типа с увеличенным показателем в 32 В. Характеристики тока соответствуют международному стандарту. Также стоит отметить наличие аналоговой настройки выходов. Устройство, благодаря наличию многооборотного переменника, может быть установлено с точностью до 0,1 В. Установка выходного стабилизационного тока возможна в грубой форме.

Средняя стоимость устройства на рынке товаров составляет около 2800-3000 рублей.

LW – K – 3010 D

Плюсы

  • высокий уровень мощности отдачи;
  • конструкция вертикального типа;
  • компактный формат;
  • приятное сочетание цены и качества;
  • надежность конструкции;
  • продолжительный эксплуатационный срок.

Минусы

значимые недостатки отсутствуют.

Лабораторный блок питания LW – K – 3010 D

1. YA XUN PS – 1502 DD

Устройство высокого качества, несмотря на китайское происхождение. Данный аппарат особо часто применяется в сервисах по ремонту смартфонов, планшетов и других гаджетов. YA XUN PS – 1502 DD является достаточно простым одноканальным инструментом с максимальным диапазоном вольтажа 15 ватт и 1-3 ампера. Пульсационный показатель равен 3 единицам, а за настройку параметров отвечают 4 резистора. Наличие возможности тонкой настройки позволяет особо точно установить даже четырехзначные параметры. Однако, несмотря на название, устройство подходит только для простых и особо распространенных задач.

Приобрести данное устройство можно всего за 1300 рублей.

YA XUN PS – 1502 DD

Плюсы

  • упрощенная рабочая схема;
  • простота управления;
  • низкая стоимость;
  • качество сборки;
  • надежность конструкции;
  • длительный эксплуатационный срок.

Минусы

  • малоизвестный бренд;
  • слабо справляется со сложными задачами.

Лабораторный блок питания YA XUN PS – 1502 DD

Схема


Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
  3. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
  4. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

УНИВЕРСАЛЬНЫЕ БЛОКИ ПИТАНИЯ

Универсальный БП — это надежный источник электропитания, обладающий стабильными выходными параметрами и имеющий двойной запас по мощности. На его передней панели в общем случае должны размещаться:

1. Стрелочные и цифровые измерительные приборы (вольтметр, амперметр). При этом:
стрелочный даст возможность оценить динамические изменения контролируемых параметров;
цифровой позволит с высокой точностью контролировать выходные характеристики БП.

2. Органы управления, с помощью которых регулируют выходные параметры в режимах «грубо» и «точно», индикатор режима работы, тумблер или клавишный выключатель питающей электросети.

Теоретически возможно, но практически нецелесообразно разработать и изготовить универсальный блок питания, который подойдет, как говорят, «на все случаи жизни». Такое устройство будет иметь огромные размеры и вес, а его стоимость превысит все допустимые пределы.

Поэтому современные универсальные источники вторичного напряжения классифицируются по мощности, по номинальному значению выходного напряжения и по количеству выходов питающего напряжения. Исходя из этих градаций и осуществляют выбор необходимого прибора.

По номинальному значению выходного напряжения универсальные блоки питания бывают:

  • низковольтные до 100 В;
  • средневольтные до 1000 В;
  • высоковольтные свыше 1000 В.

По выходной мощности они делятся на:

  • микромощные, выходная мощность которых не превышает 1 Вт;
  • малой мощности от 1 до 10 Вт;
  • средней мощности 10…100 Вт;
  • повышенной (от 100 до 1000 Вт) и высокой (свыше 1000 Вт) мощности.

При этом универсальные источники электропитания могут быть одно или многоканальными, то есть обеспечивающие подачу одного или нескольких питающих напряжений.

Блок питания с регулировкой.

Одним из самых простых универсальных источников электропитания является регулируемый. Например, для начинающих радиолюбителей таким устройством может быть блок питания с током нагрузки в несколько ампер и позволяющий регулировать выходное напряжение в пределах от 1 до 36 В.

К нему можно подключить не только радиотехническое устройство или электродвигатель, но и автомобильный аккумулятор для зарядки.

В основе электрической схемы такого блока питания лежит мощный силовой трансформатор, а на выходе устанавливается мощный транзистор, установленный на теплоотводящий радиатор. Управляет транзистором специальная микросхема. Имеющиеся низкочастотные пульсации и высокочастотные шумы сглаживаются электролитическими конденсаторами большой емкости.

Пошаговая инструкция

Процесс изготовления импульсного БП выглядит так:

  • выполняют расчет изделия в онлайн-калькуляторе (публикуются на многих сайтах) или специальной программе. В зависимости от желаемых характеристик БП, ПО подберет параметры всех элементов: конденсаторов, транзисторов, дросселей и пр.;
  • закупают все радиодетали;
  • в пластине текстолита в соответствии со схемой и размерами элементов высверливают отверстия. Далеко не всегда удается добиться желаемых характеристик с первого раза, ввиду чего схему приходится дополнять компенсаторами и прочими элементами. Необходимо оставить для них место на плате;
  • на схеме выбирают точки входа, помеченные символами «АС», припаивают предохранитель и далее один за другим все элементы согласно схеме;
  • выполняют проверку.

Схема блок питания на tl494 с регулировкой напряжения и тока

Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока.

Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.

Составные части импульсного блок питания на tl494

Блок питания можно разделить на 3 части:

Внутренний блок питания

Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.

2 Блок управления.

Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.

Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока.

Резисторы R11 и R12 можно использовать многооборотные.

Блок управления можно собрать на отдельной плате.

Печатная плата блока управления

3 Силовая часть

Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.

Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.

Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.

Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.

Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.

Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.

Схема блок питания на tl494 с регулировкой напряжения и тока

Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:

Внешний вид готового блока питания

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.


А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Вернуться наверх к меню

Сборка и настройка ЛБП

Рекомендуем строить этот лабораторный БП в следующем порядке:

  1. Сборка и проверка модуля с мостовым выпрямителем, фильтрацией и реле, подключение к трансформатору и активация реле от независимого источника для проверки выходных напряжений.
  2. Исполнение модуля переключения обмоток и контроля охлаждения радиаторов. Запуск этого модуля облегчит настройку будущего источника питания. Для этого понадобится другой источник питания для подачи регулируемого напряжения на вход системы, отвечающей за управление реле.
  3. Температурная часть схемы может быть настроена путем моделирования температуры. Для этой цели использовалась тепловая пушка, которая аккуратно нагревала радиатор с датчиком (BD135). Температура измерялась с помощью датчика, включенного в мультиметр (в то время не было готовых точных измерителей температуры). В обоих случаях настройка сводится к подбору PR201 и PR202 или PR301 и PR302 соответственно.
  4. Затем запускаем блок питания, регулируя RV1 таким образом, чтобы получить 0 В на выходе, что полезно при настройке ограничения тока. Само ограничение зависит от значений резисторов R18, R7, R17.
  5. Регулирование А/В индикаторов сводится к настройке опорных напряжений между контактами 35 и 36 микросхем ICL. В измерителях напряжения и тока использовался внешний эталонный источник. В случае с измерителями температуры такая точность не нужна, а отображение с десятичным знаком все же несколько преувеличено. Передача показаний температуры осуществляется одним выпрямительным диодом (на схеме их три). Это связано с дизайном печатной платы. На ней есть две перемычки.
  6. Непосредственно на выходных клеммах к вольтметру подключен делитель напряжения и резистор 0,01 Ом / 5 Вт, на котором падение напряжения используется для измерения тока нагрузки.

Дополнительным элементом источников питания является схема, которая позволяет включать только один источник питания без необходимости использования второго канала, несмотря на тот факт, что вспомогательный трансформатор питает оба канала источника питания сразу. На той же плате размещена система для включения и выключения блока питания с помощью одной слаботочной кнопки (для каждого канала блока питания).

Схема питается от инвертора, который в состоянии ожидания потребляет около 1 мА от сети 220 В. Все схемы в хорошем качестве можете скачать в архиве

Простой БП своими руками

Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.

Трансформатор я брал из старого зарядного от шуруповерта , на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера),  брал его из старого блока ATX также как и электролиты, стабилитрон,  резисторы.

Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.

Резистор R2 проволочный  мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.

Состоит из двух частей:  на первой собран стабилизатор и защита и, а на второй силовая часть.

Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату  припаяны  транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно .

Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный  на  4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.

После того как делитель собран и индикация работает нужно от градуировать его , для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это  к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.

Амперметр: для него берём резистор на 0,27 ома !!! и переменный на 50к, схема подключения  ниже, резистором на 50к выставим максимальное отклонение стрелки.

Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

Скачать список элементов (PDF)

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.

Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.

Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).

Лабораторные блоки оснащают также специальными входами для подачи модулирующих сигналов, что позволяет пользователю формировать выходное напряжение и ток произвольной формы.

Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.

Линейные.

Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение ~220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.

Приборы, работающие по такому принципу обеспечивают требуемое значение выходного напряжения с высокой точностью. Оно отличается стабильностью и отсутствием пульсаций. Однако они имеют ряд недостатков:

  • большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
  • низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
  • наличие высокочастотных помех, проникающих из сети ~220 в, 50 Гц., для устранения которых необходим сетевой фильтр;
  • относительно небольшое время наработки на отказ, вызванное старением электролитических конденсаторов.

Импульсные.

В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).

Основные преимущества импульсных лабораторных источников обеспечиваются за счет:

  • плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
  • высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.

За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.

Существенным недостатком импульсных лабораторных блоков, несколько ограничивающих их применение являются:

  • высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
  • радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.

При работе с радиочастотными схемами импульсные блоки питания необходимо располагать на максимальном расстоянии от них или использовать трансформаторные схемотехнические решения.

Основным техническим параметром лабораторных источников электро энергии является мощность. Здесь существует такое подразделение:

  • стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
  • большой мощности.

Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.

2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Расчёт мощности блока питания на 12 V

Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:

Для светодиодных лент.

В этом случае расчёт выполняется следующим образом:

  • за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
  • определяется её длина;
  • эти значения перемножаются, и полученное выражение увеличивается на 30%.

Увеличение на 30% обеспечивает необходимый запас мощности блока питания. Этот расчёт можно выразить следующей формулой:

P блока = P уд × L ленты × K запаса , где:

P блока – электрическая мощность блока питания;

P уд − электрическая мощность 1 метра светодиодной ленты;

L ленты – длина ленты;

K запаса — коэффициент запаса мощности.

Внешний вид блоков питания персонального компьютера

Для персонального компьютера.

При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:

  • OuterVision – калькулятор, ссылка для скачивания: https://outervision.com/power-supply-calculator
  • , калькулятор питания − ссылка для скачивания: https://www.enermax.outervision.com/index.jsp
  • MSI – калькулятор источника питания, ссылка для скачивания: https://ru.msi.com/power-supply-calculator
  • KSA Power Supply Calculator WorkStation – ссылка для скачивания: https://ksa-soft.ru/soft/10-ksa-power-supply-calculator-workstation.html

Читать также: Подъем штанги к подбородку какие мышцы работают

Для зарядки электрического инструмента и электронных гаджетов.

Когда необходимо определить мощность БП для зарядки шуруповёрта, смартфона или иного электронного устройства, необходимо знать их электрическую мощность и учесть коэффициент запаса. Это можно отразить следующей формулой:

P блока = P устройства × K запаса

Универсальный адаптер питания 12 В