Как рассчитывается мощность двигателя?
Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.
N_дв=M∙ω=2∙π∙M∙n_дв
где:
N_дв – мощность двигателя, кВт;
M – крутящий момент, Нм;
ω – угловая скорость вращения коленчатого вала, рад/сек;
π – математическая постоянная, равная 3,14;
n_дв – частота вращения двигателя, мин-1.
Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.
N_дв=(V_дв∙P_эфф∙n_дв)/120
где:
V_дв – объем двигателя, см3;
P_эфф – эффективное давление в цилиндрах, МПа;
120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).
Для расчета лошадиных сил киловатты умножаем на 0,74.
N_(дв л.с.)=N_дв∙0,74
где:
N_дв л.с. – мощность двигателя в лошадиных силах, л. с.
Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.
На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.
Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.
Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.
Формула расчета сечения провода и как определяется сечение провода
Раньше уже говорилось, что чрезмерный ток недопустим для проводов. Это связано с их перегревом. Поэтому каждый проводник способен пропускать через себя ограниченный ток. Почему провода греются? Любой материал в нормальных условиях имеет собственное сопротивление. Проходящий через него ток производит работу по нагреву металла. Этот нагрев допускается до определенной температуры, после чего начинается его плавление.
Рекомендуем прочитать: Принцип работы регулятора напряжения
Существуют специальные таблицы, помогающие подобрать сечение провода в зависимости от рабочего тока. Сечение – это площадь проволоки в разрезе. Как правило, такой разрез имеет вид круга. Чтобы найти сечение, необходимо найти площадь этого круга. Можно воспользоваться формулой:
где S – площадь круга или сечение в мм2; П – постоянное число равное 3,14159265; r – радиус круга. Для определения радиуса диаметр делят на два, затем подставляют в формулу.
Мощность, напряжение, сила тока – это основные величины, зависящие друг от друга. Используя одну из приведенных формул, можно найти необходимую величину.
https://youtube.com/watch?v=ULPLfTX5OgE
Чем грозит превышение разрешенной мощности?
На текущий момент при обнаружении превышения максимальной нагрузки электрокомпания вводит режим ограничения потребления. Основанием для этого является нарушения обязательств, прописанных в договоре энергоснабжения. Как правило, ограничение потребления это отключение электрического тока. Алгоритм отправки такого уведомления показан на рисунке.
Пример уведомления потребителя
По истечении 10 дней, после отправки уведомления компания производит отключение энергоснабжения. Чтобы избежать этого потребитель должен в десятидневный срок устранить нарушение, после чего обратиться к поставщику услуг для составления соответствующего акта. Подача электроэнергии будет возобновлена после оплаты электрической компании пени в соответствии с договором.
Более серьезные последствия могут возникнуть в том в случае, если помимо нарушения объема выделенной энергии будет выдвинуто обвинение в бесконтрольном потреблении электроэнергии. Основанием для этого будет снятие пломб с вводного автомата. Получить более подробную информацию о последствиях бесконтрольного потребления электричества, правил учета электроэнергии и т.д., можно на нашем сайте.
Пломба на вводном автомате (отмечена красным)
Вычисление мощности
Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.
При постоянном напряжении
Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:
I = P / U,
где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.
Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.
Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.
https://youtube.com/watch?v=dHDBCH-Blew
При переменном напряжении
Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:
- Меньшие затраты при передаче по ЛЭП;
- Простое создание повышающих и понижающих напряжение устройств;
- Отсутствие полярности.
Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:
P = U ⋅ I ⋅ cosφ,
где cosφ определяет характер нагрузки.
В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.
Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.
Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:
P = U ⋅ I ⋅ sinφ.
Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).
https://youtube.com/watch?v=waSPR2oGOI4
В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:
- Более экономная передача электричества на дальние расстояния;
- Уменьшение затрат при создании электродвигателей 3-х фазной системы;
- Равномерность механической нагрузки на электрогенератор.
Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:
P = 1,73 ⋅ I ⋅ U ⋅ cosφ.
Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.
Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:
I = P /(U ⋅ cosφ).
Как узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
В однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения
В трехфазной цепи
В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.
Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.
Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема. Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости
Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать
Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать
Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.
В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.
https://youtube.com/watch?v=UtNtmbrojVI
Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.
Что такое мощность (Р) электротока
Из представленного на рисунке выражения несложно сделать вывод о том, что в базовом определении речь идет о выполнении работы за определенный интервал времени. Для наглядности можно рассмотреть лампу накаливания. С учетом низкого КПД (4-6%) большая часть энергии потребляется для генерации излучения в инфракрасном диапазоне.
Выполненная в этом примере работа будет равна количеству теплоты. Потребленную мощность можно выразить в джоулях за единицу времени. В электрических терминах – при определенной силе тока (I) перемещение заряда будет сопровождаться изменением потенциала в начальной и конечной точках цепи (f1-f2=U). Это соотношение соответствует формуле мощности электрического тока (P), созданной на основе закона Ома:
P = I * U = U2/ R = I2 * R.
Что влияет на мощность тока
Добавление электрического сопротивления позволяет учесть потери в подключенной цепи (нагрузке). В формуле нахождения мощности для полной цепи учитывают параметры источника питания. Для более точного анализа следует оценить скорость потребления энергии на единицу объема проводника (ΔV).
Мощность равна формуле:
Pуд = Rуд * j2,
где:
- Rуд – удельное сопротивление;
- j – плотность тока соответствующего участка цепи.
Из этого выражения понятна зависимость расхода электричества от проводимости. Данное соотношение определяет требования к используемой кабельной продукции. При недостаточном сечении (высоком уровне примесей) увеличивается нагрев. Аналогичный результат получают при подключении мощной нагрузки. На определенном уровне произойдет тепловое разрушение материала.
К сведению. Этот процесс является причиной типичных аварийных ситуаций. Для предотвращения повреждений применяют специализированную технику – автоматические выключатели.
Отличия мощности при постоянном и переменном напряжении
При постоянных значениях тока в сети рассчитать потребление можно по представленной выше методике. Однако в быту часто нужны сведения о том, как вычислить мощность при подключении к стандартному источнику питания (220 В, 50 Гц). В подобной ситуации следует учитывать периодическое изменение электрических величин с определенной частотой. Существенное влияние оказывают реактивные (емкостные, индукционные) характеристики нагрузок.
Мощность в цепи переменного электрического тока
Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.
Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.
В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.
Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.
Watch this video on YouTube
Что такое крутящий момент
Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).
Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.
У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.
Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.
Формулы для расчета тока в трехфазной сети
Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.
Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).
Формула подсчета электротока в трехфазной сети
Действующее значение переменного синусоидального тока
Если все положительные и отрицательные мгновенные значения переменного синусоидального тока сложить, то их сумма будет равна нулю. Но если алгебраическая сумма всех мгновенных значений за период равна нулю, то и среднее значение этого тока за период также равно нулю: Iavg(T)={\displaystyle I_{avg}(T)=0}.
- Среднее значение синусоидального тока за период не может служить для измерения этого тока.
Чтобы судить о величине переменного синусоидального тока, переменный ток сравнивают с постоянным током по их тепловому действию.
- Два тока, один из которых синусоидальный, а другой постоянный, эквивалентны по тепловому действию, если они, протекая по одинаковым сопротивлениям, за одинаковые отрезки времени выделяют одинаковое количество тепла.
- Действующее значение переменного синусоидального тока численно равно току постоянному, эквивалентному данному синусоидальному току, то есть выделяющему порознь с ним в одинаковом сопротивлении за одинаковый отрезок времени одинаковое количество тепла.
Найдено экспериментально, а затем подтверждено теоретически, что величина действующего значения переменного синусоидального тока находится в строго определённой зависимости от амплитуды этого тока: I=Im2{\displaystyle I={\frac {I_{m}}{\sqrt {2}}}}, то есть действующее значение I{\displaystyle I} переменного синусоидального тока в 2{\displaystyle {\sqrt {2}}} раз меньше амплитуды этого тока.
Амперметр электромагнитной или электродинамической системы, включенный в цепь переменного синусоидального тока, показывает действующее значение тока.
Аналогично действующему значению переменного синусоидального тока можно говорить о действующем значении переменной синусоидальной электродвижущей силы или переменного синусоидального напряжения.
- Действующее значение напряжения в 2{\displaystyle {\sqrt {2}}} меньше его амплитуды: U=Um2{\displaystyle U={\frac {U_{m}}{\sqrt {2}}}} или Um=2×U{\displaystyle U_{m}={\sqrt {2}}\times U}.
Вольтметр электромагнитной или электродинамической системы, включенный в сеть переменного синусоидального тока, показывает действующее значение синусоидального напряжения.
- Например, в электрической розетке электрическое напряжение ∼220 B{\displaystyle \thicksim {220}~B}, так как это действующее значение, амплитудное напряжение будет 220×1,41=311{\displaystyle {220}\times {1,41}={311}} Вольт.
Данные формулы справедливы только для синусоидального тока, если импульсы будут треугольной, пилообразной, прямоугольной или иной формы — требуется другая методика вычисления.
Методом математического анализа можно определить среднее значение переменного синусоидального тока за половину периода, например за положительную полуволну синусоиды.
Среднее значение переменного синусоидального тока за половину периода равно IIavg(T2)=2πIm=,637Im{\displaystyle {\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={{\frac {2}{\pi }}I_{m}}={0,637}\;I_{m}}.
Также можно определить отношение k{\displaystyle k} действующего значения тока к среднему за половину периода (положительную полуволну). Это отношение для синусоидального тока равно:
k=IIavg(T2)=Im22πIm=π22=1,11{\displaystyle k={\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={\frac {\frac {I_{m}}{\sqrt {2}}}{{\frac {2}{\pi }}I_{m}}}={\frac {\pi }{2{\sqrt {2}}}}={1,11}}.
Расчет номинальной мощности трансформатора
Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения
Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.
Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.
Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.
Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.
Таким образом, для двухтрансформаторной подстанции
В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.
Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.
Таким образом, суммарная установленная мощность двухтрансформаторной подстанции
При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.
При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.
Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).
Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.
Источник