Электродвигатель постоянного тока

Содержание

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

https://youtube.com/watch?v=l7lx9-c3Po0

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока. Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмотками

Рисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор . В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.

Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

Номинальная величи

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.

Принцип действия синхронных электродвигателей

Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке. Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.

Виды и варианты исполнения

Дизельные электростанции различаются по выходной электрической мощности, виду тока (переменный трёхфазный/однофазный, постоянный), выходному напряжению, а также частоте тока (например, 50, 60, 400 Гц).

Также дизельные электростанции разделяют по типу охлаждения дизельного двигателя, воздушному или жидкостному. Электростанции с дизельным двигателем жидкостного охлаждения — это агрегаты больших мощностей и размеров.

По назначению

  • Портативные (бытовые, переносные) — электростанции с дизельным двигателем воздушного охлаждения мощностью от 0,3 кВт до 20 кВт.
  • Стационарные (промышленные) — электростанции с дизельным двигателем жидкостного охлаждения. Как правило, выходной ток — трехфазный, напряжением от 400/230В до 10 кВ. Единичная мощность установок составляет от 8 кВт (10 кВА) до 2000 кВт (2400 кВА).

По конструктивному исполнению

  • Открытого исполнения — базовое исполнение электростанции, предназначено для размещения электроустановки в специально оборудованном помещении.
  • В шумозащитном кожухе — для установки в помещение при наличии требований к снижению шума.
  • Во всепогодном шумозащитном кожухе — для установки на улице при наличии требований к снижению шума.
  • Контейнерные — монтаж электростанции в блок-контейнер осуществляется для эксплуатации установки в тяжелых климатических условиях и повышенной вандалозащищённости.
  • Электростанция может быть установлена в фургон, машину или на шасси. Таким образом, она приобретает статус мобильной электростанции.

По роду тока

Маломощные дизельные электростанции вырабатывают, как правило, однофазный переменный ток напряжением 220 В и/или трёхфазный напряжением 380 В.

Трёхфазные электростанции имеют более высокий КПД за счёт более высокого КПД генератора переменного тока.

Переносные дизельные электростанции с встроенным выпрямителем (инвертором) могут иметь дополнительный выход постоянного тока напряжением 12-14 вольт, например, для зарядки аккумуляторов.

Мощные дизельные электростанции вырабатывают трёхфазный ток:

  • низковольтные — с напряжением до 1 кВ;
  • высоковольтные — с напряжением более 1 кВ (6,3 кВ, 10 кВ).

Если необходимо передавать электроэнергию, выработанную низковольтными электростанциями, на значительные расстояние по линиям электропередачи, напряжение повышается на электрических подстанциях до 6,3 кВ или 10,5 кВ.

По типу генератора переменного тока

Синхронный генератор переменного тока Так как частота переменного тока синхронного генератора определяется числом оборотов ротора (двигателя), то дизельная электростанция должна иметь механизм, обеспечивающий постоянное число оборотов дизельного двигателя независимо от нагрузки (генерируемой электрической мощности). Частота переменного тока синхронного генератора будет: f = n 60 {\displaystyle f={\frac {n}{60}}} , где f {\displaystyle f} — частота в герцах; n {\displaystyle n} — число оборотов ротора в минуту.

Если генератор имеет число пар полюсов p {\displaystyle p} , то соответственно этому частота электродвижущей силы такого генератора будет в p {\displaystyle p} раз больше частоты электродвижущей силы двухполюсного генератора: f = p n 60 {\displaystyle f=p{\frac {n}{60}}} .

ЭДС синхронного генератора регулируется изменением тока возбуждения.

Асинхронный генератор переменного тока

Асинхронный генератор может генерировать переменный ток произвольной, нестандартной частоты (значительно отличающейся, например, от используемой в промышленности и быту частоты 50 Гц). Переменный ток после выхода из генератора подвергается выпрямлению, затем получившийся постоянный ток инвертор преобразует в переменный ток с параметрами, определяемыми стандартом. Следует отметить, что недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида.

ЭДС асинхронного генератора регулируется изменением числа оборотов двигателя и изменением тока возбуждения (если предусмотрено конструкцией генератора).

Асинхронные генераторы без встроенной системы «стартового усиления» плохо переносят длительные перегрузки, в отличие от синхронных.

Сварочные агрегаты

Особой разновидностью дизельных и бензиновых электростанций следует считать сварочные агрегаты, генерирующие постоянный или переменный ток для электродуговой сварки. Выходное электрическое напряжение относительно низкое (около 90 вольт), однако сила тока велика, электрические генераторы не боятся коротких замыканий.

Принцип работы H-моста

Перед тем, как переходить непосредственно к управлению двигателем, обсудим что такое H-BRIDGE (H-мост). Собранная нами далее схема будет осуществлять две функции: управлять двигателем постоянного тока с помощью управляющих сигналов малой мощности и изменять направление вращения двигателя.

Нам известно, что для изменения направления вращения двигателя постоянного тока необходимо изменить полярность приложенного к нему питающего напряжения. И как раз для смены полярности напряжения хорошо подходит устройство, называемое H-мостом. На представленном выше рисунке мы имеем 4 выключателя. Как показано на рисунке 2 если выключатели A1 и A2 замкнуты, то ток через двигатель течет справа налево как показано на второй части рисунка 2 – то есть в этом случае двигатель будет вращаться по часовой стрелке. А если выключатели A1 и A2 разомкнуты, а B1 и B2 – замкнуты, то ток через двигатель в этом случае будет протекать слева направо как показано на второй части рисунка, то есть двигатель будет вращаться против часовой стрелки. В этом и заключается принцип работы H-моста.

Рисунок 2 (часть 1)

Рисунок 2 (часть 2)

Мы в качестве H-моста будем использовать специализированную микросхему L293D, которую еще называют драйвером двигателей. Эта микросхема предназначена для управления двигателями постоянного тока малой мощности (см. рисунок) и содержит в своем составе два H-моста, то есть с ее помощью можно управлять двумя двигателями. Эта микросхема часто используется для управления двигателями в различных роботах.

В следующей таблице указаны необходимые значения напряжений на выводах INPUT1 и INPUT2 микросхемы L293D для смены направления вращения двигателя.

Enable Pin Input Pin 1 Input Pin 2 Motor Direction
High Low High вправо
High High Low влево
High Low Low стоп
High High High стоп

То есть, чтобы двигатель вращался по часовой стрелке необходимо чтобы на 2A было напряжение высокого уровня (high), а на контакте 1A – напряжение низкого уровня (low). Аналогично для вращения двигателя против часовой стрелки необходимо обеспечить на 1A напряжение высокого уровня, а на 2A – низкого.

Как показано на следующем рисунке Arduino UNO имеет 6 ШИМ каналов (обозначенных на плате специальным знаком – тильдой), любой из которых мы можем использовать для получения изменяющего напряжения (на основе ШИМ). В данном проекте мы будем использовать в качестве ШИМ выхода контакт PIN3 Arduino UNO.

Рабочие моменты

Давайте разберем некоторые характеристики и особенности машин постоянного тока.

Пуск и режим реверса

К электрическому двигателю подключен регулятор оборотов

В момент, когда двигатель запускается, якорь имеет неподвижное положение, а значит, ЭДС в нем равна нулю. Из-за того, что сопротивление якорной обмотки очень маленькое, пусковой тока якоря намного превышает номинальный. Если представить себе такой пуск двигателя, то он однозначно бы вышел из строя.

  • Чтобы такого не происходило, пусковой ток в двигателях постоянного тока с параллельным возбуждением ограничивается за счет включенного в цепь пускового реостата.
  • Пуск при этом необходимо производить при номинальном значении магнитного потока, благодаря чему увеличивается пусковой момент и быстро растет ЭДС в обмотке якоря. В результате двигатель разгоняется быстрее, а время, когда проходит большой пусковой ток по обмотке сокращается.
  • Когда разгон двигателя завершается, реостат выводится из цепи – делается это либо плавно, либо ступенчато.
  • Для того чтобы остановить двигатель, достаточно отключить подачу питания к нему.
  • Для любого электрического двигателя доступен режим вращения в обратном направлении – реверс. Для этого нужно всего лишь изменить направление тока либо в обмотке якоря, либо в обмотке статора.

Потери мощности и КПД

Даже самый технически совершенный двигатель постоянного тока не может работать без потерь мощности

Любой двигатель или генератор постоянного тока работает с потерями мощности. Их делят на два типа: основные и добавочные.

  • К первым относят магнитные, электрические и механические.
  • Магнитные потери, происходящие в стали обозначают ΔРс. Происходят они из-за того, что во время вращения сердечник на якоре постоянно перемагничивается, поэтому возникают потери на гистерезис и вихревые токи.
  • Электрические потери (ΔРэл) происходят из-за активного сопротивления обмоток, а также сопротивления щеточного контакта, то есть данное значение представляется в виде суммы указанных потерь.
  • Механические (ΔРмех) включают потери на трение подшипников, трение щеток о коллектор, трение вращающегося якоря о воздух (и такое есть) и вентиляционные потери.
  • Все остальные потери называются добавочными и связаны они в основном с взаимодействием различных частей агрегата с магнитным полем.

Потери незначительны при отсутствующей нагрузке

Для расчета каждого типа потерь применяются специальные формулы. Мы не будем так глубоко вдаваться в суть, а скажем лишь, что КПД машины постоянного тока определяется отношением отдаваемой мощности, к потребляемой. Выражают данное значение обычно в процентах.

Современные машины постоянного тока стали очень эффективными. КПД у них обычно варьируется в пределах 75-90%.

Рабочие характеристики

Рабочие характеристики ДПТ

Рабочие характеристики представляют собой следующие зависимости:

  • Скорости вращения, потребляемого тока и мощности двигателя;
  • КПД от полезной мощности при условии, что напряжение питания неизменно.
  • Тока обмотки возбуждения и отсутствия добавочного сопротивления в цепи якоря.

Все эти параметры позволяют говорить о свойствах двигателей в режиме эксплуатации, а также находить оптимальные и экономичные режимы их работы.

Регулировка скорости вращения двигателя

Принципиальная схема регулятора оборотов вращения

Регулировать скорость вращения машины постоянного тока можно тремя способами: изменение напряжения сети, реостатное регулирование, изменение магнитного потока. Давайте обо всем по порядку.

  • Изменение напряжения осуществляется за счет устройств, которые могут, собственно, менять величину напряжения.
  • Реостатное регулирование, как мы уже упоминали по ходу статьи, нуждается во введении в цепь якоря дополнительных резисторов активного типа, то есть меняющих свои характеристики при определенных условиях.
  • Регулирование магнитного потока происходит за счет уменьшения тока возбуждения.

Конечно, мы назвали не все характеристики машин постоянного тока, а лишь основные, но для ознакомления с этими агрегатами этого вполне достаточно.

Видео в этой статье продемонстрирует, как работают данные устройства.

Современное применение и перспективы

Существует немало устройств, для которых увеличение времени безотказной работы имеет важнейшее значение. В подобном оборудовании применение БДКП всегда оправданно, несмотря на их сравнительно высокую стоимость. Это могут быть водяные и топливные насосы, турбины охлаждения кондиционеров и двигателей и т. д. Бесщёточные моторы используются во многих моделях электрических транспортных средств

В настоящее время на бесколлекторные двигатели всерьёз обратила внимание автомобильная промышленность

БДКП идеально подходят для малых приводов, работающих в сложных условиях или с высокой точностью: питатели и ленточные конвейеры, промышленных роботы, системы позиционирования. Существуют сферы, в которых бесколлекторные двигатели доминируют безальтернативно: жёсткие диски, насосы, бесшумные вентиляторы, мелкая бытовая техника, CD/DVD приводы. Малый вес и высокая выходная мощность сделали БДКП также и основой для производства современных беспроводных ручных инструментов.

https://youtube.com/watch?v=7N9CHEF2214

https://youtube.com/watch?v=5F4lQ-03D1Y

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.