Закон джоуля-ленца: его формулировка и применение

Содержание

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.

https://youtube.com/watch?v=AhTBkQtk6qY

https://youtube.com/watch?v=jyfmcUiBPvg

Тепловое действие тока

Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·tА – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.История открытия явленияВ своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом.Применение свойств теплового действия токаИсследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Международная система (СИ)

джоуль в секунду → мегаватт
(МВт)
джоуль в секунду → киловатт
(кВт)
джоуль в секунду → ватт
(Вт)
джоуль в секунду → вольт-ампер
(В-А)

Единицы:

мегаватт
(МВт)

 /
киловатт
(кВт)

 /
ватт
(Вт)

 /
вольт-ампер
(В-А)

 открыть 

 свернуть 

СГС и внесистемные единицы

джоуль в секунду → гигакалорий в секунду
джоуль в секунду → килокалорий в секунду
джоуль в секунду → калорий в секунду
джоуль в секунду → гигакалорий в минуту
джоуль в секунду → килокалорий в минуту
джоуль в секунду → калорий в минуту
джоуль в секунду → гигакалорий в час
джоуль в секунду → килокалорий в час
джоуль в секунду → калорий в час
джоуль в секунду → котловая лошадиная сила
(hp(S))
джоуль в секунду → электрическая лошадиная сила
(hp(E))
джоуль в секунду → гидравлическая лошадиная сила
джоуль в секунду → механическая лошадиная сила
(hp(I))
джоуль в секунду → метрическая лошадиная сила
(hp(M))
джоуль в секунду → килограмм-сила метр в секунду
(кгс*м/с)
джоуль в секунду → джоуль в секунду
джоуль в секунду → джоуль в минуту
джоуль в секунду → джоуль в час
джоуль в секунду → эрг в секунду
джоуль в секунду → метрическая тонна охлаждения
(RT)
джоуль в секунду → фригория в час
(fg/h)

Единицы:

гигакалорий в секунду

 /
килокалорий в секунду

 /
калорий в секунду

 /
гигакалорий в минуту

 /
килокалорий в минуту

 /
калорий в минуту

 /
гигакалорий в час

 /
килокалорий в час

 /
калорий в час

 /
котловая лошадиная сила
(hp(S))

 /
электрическая лошадиная сила
(hp(E))

 /
гидравлическая лошадиная сила

 /
механическая лошадиная сила
(hp(I))

 /
метрическая лошадиная сила
(hp(M))

 /
килограмм-сила метр в секунду
(кгс*м/с)

 /
джоуль в секунду

 /
джоуль в минуту

 /
джоуль в час

 /
эрг в секунду

 /
метрическая тонна охлаждения
(RT)

 /
фригория в час
(fg/h)

 открыть 

 свернуть 

Британские и американские единицы

джоуль в секунду → американская тонна охлаждения
(USRT)
джоуль в секунду → британская термальная единица в секунду
(BTU/s)
джоуль в секунду → британская термальная единица в минуту
(BTU/min)
джоуль в секунду → британская термальная единица в час
(BTU/hr)
джоуль в секунду → фут фунт-сила в секунду
(ft*lbf/s)

Единицы:

американская тонна охлаждения
(USRT)

 /
британская термальная единица в секунду
(BTU/s)

 /
британская термальная единица в минуту
(BTU/min)

 /
британская термальная единица в час
(BTU/hr)

 /
фут фунт-сила в секунду
(ft*lbf/s)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

джоуль в секунду → планковская мощность
(L²MT⁻³)

Единицы:

планковская мощность
(L²MT⁻³)

Нередкие проблемы

Итак, проблема нахождения времени, т.е. тот период, когда ток проходит по проводнику (замкнутая цепь)

Вторая проблема, нахождение сопротивления проводника. Используется формула рельс:рис.4

Рисунок 2. Формула нахождение сопротивления проводника

«Р» удельное сопротивление, измеряемое в Ом*м/см2, l и S является длина и площадь поперечного сечения. При математических операциях метры и сантиметры2 сокращаются и получаются Омы.

Удельным сопротивлением является величина, указанная в таблице, индивидуальная для каждого металла. Рассмотрим с какой целью это используется.

Для расчета мощности тепла прибора нужно определить, что и в каком объеме нужно нагреть, количество теплоты и времени на передачу тепла телу.

После расчета определится сопротивление и сила тока в данной цепи. Учитывая полученные данные, выбирается материал сечение и длина проводника.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

https://youtube.com/watch?v=yP1V4Zzjl6Q

Работа и мощность электрического тока

В каждой замкнутой цепи в обязательном порядке имеет место двойное преобразование энергии. В источнике тока совершается видоизменение какой-либо энергии (например, в генераторе — механической) в электрическую, а в цепи тока она опять превращается в равносильное количество энергии иного вида. Мера превращения в цепи тока электроэнергии в какие-либо иные виды энергии — величина работы тока.

Но мы понимаем, что работа и мощность электрического тока является работой электрических сил поля, перемещающих заряды; поэтому ее легко подсчитать.

Работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесенного заряда на величину разности потенциалов между точками в начале и конце переноса, т.е. на величину напряжения:

A = qU.

Очевидно, что это соотношение может быть применимо и для оценки таких понятий, как работа и мощность электрического тока. О величине заряда, протекшего в цепи, мы можем судить по току, текущему в цепи, и времени его протекания, так как q = It.

Используя такое соотношение, мы получаем формулу, выражающую величину работы тока на отдельном участке цепи, имеющем напряжение U:

A = UIt.

Работа и мощность электрического тока измеряются следующим образом: если измерять ток в амперах, время работы в секундах, а напряжение в вольтах, то работу — в джоулях (Дж).

Таким образом, 1 джоуль = 1 ампер х 1 вольт х 1 секунду.

Мощность измеряется ваттами (Вт):

1 ватт = 1 джоуль/1 секунда, или 1 ватт = 1 вольт х 1 ампер.

Вопрос о подсчете величины работы тока на этом участке совершенно не связан с вопросом о том, в какой вид энергии превратится на данном участке электрическая энергия. Эта работа является мерой электроэнергии, превращенной в другие виды.

Электрический ток, выполняя работу, может накалять нить электролампы, плавить металлы, вращать якорь электродвигателя, вызывать химические превращения и т.д. Во всех случаях работа и мощность электрического тока определяют уровень преобразования электроэнергии в иные формы – механическую энергию, энергию теплового движения и т.д.

Зная, что мощность P = A/t, можно получить формулу, с помощью которой рассчитывается мощность тока на отдельном участке цепи:

P = UI.

Работа и мощность постоянного тока могут быть вычислены при помощи этих формул, а также при помощи амперметра, вольтметра. На практике работу электрического поля измеряют специальным прибором – счетчиком. Проходя через счетчик, внутри него начинает совершать обороты легкий алюминиевый диск, и его скорость вращения будет прямо пропорциональна силе тока и напряжению. Число оборотов, которое он сделает за определенное время, поможет сделать выводы о совершенной за это время работе. Счетчики электроэнергии можно увидеть в каждой квартире.

Мощность тока измеряют, используя специальный прибор – ваттметр. В устройстве этого прибора совмещаются принципы вольтметра и амперметра.

На многих электрических приборах и технических устройствах указывается их мощность. Например, мощность лампочки накаливания может быть 25 Вт, 75 Вт и др., мощность пылесоса или утюга около 1000 Вт, мощность электродвигателей может достигать очень больших значений – до нескольких тысяч киловатт. При этом имеют в виду мощность тока, который проходит через тот или иной прибор.

Работа и мощность переменного тока рассчитываются иначе. Так, для вычисления работы, совершаемой переменным током за определенный промежуток времени, можно воспользоваться формулой:

P = 1/2I₀U₀ cos φ. Зачастую эту формулу записывают в таком виде: P = IU cos φ, где I и U – значения напряжения и силы тока, которое в 2 раза меньше соответствующих амплитудных значений.

Формула вычисления мощности переменного тока будет такой же, как и для постоянного.

Единицы энергии и работы:

1 ватт-секунда = 1 Дж 1 ватт-час = 3600 Дж;

1 гектоватт-час = 360000 Дж;

1 киловатт-час = 3600000дж.

Единицы мощности:

1 ампер-вольт = 1 Вт;

1 гектоватт = 100 Вт;

1 киловатт = 1000 Вт.

fb.ru

Любознательным

Следы на песке

Если вам приходилось, гулять по пляжу во время отлива, то, вероятно,
вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно
подсыхает и белеет вокруг вашего следа. Обычно это объясняют тем, что под тяжестью тела
вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке.
Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте?
Оказывается…
Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал,
что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом.
Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может
лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате
капиллярных явлений, а на это требуется время. Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды —
он сухой и белый.

И это ещё не всё!

Жизнь выдающегося физика

24 декабря 1818 года родился Джеймс Джоуль. Биография будущего физика начинается в английском городке Солфорде, в семье успешного владельца пивоварни. Обучение мальчика происходило в домашних условиях, некоторое время физику и химию ему преподавал Джон Дальтон. Благодаря ему английский физик и полюбил науку.

Джоуль не обладал крепким здоровьем, много времени он просиживал дома, проводя физические опыты и эксперименты. Уже в 15 лет, из-за болезни отца, ему пришлось управлять пивоварней вместе с братом. Работа на отцовском заводе не давала возможности поступить в университет, поэтому Джеймс Джоуль всецело отдавался домашней лаборатории.

С 1838 по 1847 год физик активно изучает электричество и делает свои первые научные успехи. В журнале Annals of Electricity он публикует статью об электричестве, а в 1841 открывает новый физический закон, который сейчас носит его имя.

В 1847 году Джоуль заключает первый и единственный брак с Амелией Граймс. Вскоре у них рождаются Элис Амелия и Бенджамин Артур. В 1854 году жена и сын погибают. Сам Джоуль умирает в 1889 году в Англии, в городе Сейле.

За всю свою жизнь он публикует около 97 работ по физике, некоторые из них написаны совместно с другими учеными: Лайоном, Томсоном и т. д. За выдающиеся научные достижения и открытые законы физики он награжден несколькими медалями и получал пожизненную пенсию от правительства Великобритании в размере около 200 фунтов.

1.11. Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу

ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока. Если обе части формулы

RI = U,

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = R I2 Δt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r) I = .

Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

R I2Δt + r I2Δt = IΔt = ΔAст.

Первый член в левой части ΔQ = R I2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = r I2Δt – тепло, выделяющееся внутри источника за то же время.

Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ + ΔQист = ΔAст = IΔt

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника

Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Во внешней цепи выделяется мощность Отношение равное

называется коэффициентом полезного действия источника. На рис. 1.11.1 графически представлены зависимости мощности источника Pист, полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).

Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax, равная

достигается при R = r. При этом ток в цепи а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, т. е. при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.  

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?