Схема подключения амперметра и вольтметра в цепь

Содержание

Принцип действия

Устройство современного амперметра предполагает наличие нескольких катушек, среди которых есть подвижная и зафиксированная в одном положении. Соединяются они последовательно или по параллельной схеме. При прохождении через катушки происходит взаимодействие токов, в итоге подвижная катушка отклоняется. Включая прибор амперметр в электроцепь, осуществляется последовательное соединение амперметра с током. В цепях с повышенной силой тока или высоким напряжением, подключается прибор через трансформатор для стабилизации напряжения.

Принцип действия классического аналогового амперметра заключается в том, что параллельно с постоянным магнитом на оси фиксируется стальной элемент со стрелкой. От магнита свойства передаются на данный якорь, причем местоположение и якоря, и магнита, находится на пути прохождения силовых линий. При данном расположении якоря на шкале отображается положение стрелки прибора на нулевом значении.

Когда ток батареи или генератора начинает проходить по шине, вокруг нее появляется магнитный поток. А силовые линии на месте крепления якоря на оси перпендикулярны направлению силовых линий в постоянном магните. От электротока и под воздействием магнитного потока якорь пытается выполнить разворот на 90 градусов, однако этому препятствует поток в магните. От значения и направления тока в шине зависит уровень взаимодействия двух разнонаправленных магнитных потоков. Непосредственно на эту величину стрелка отклоняется от нуля на шкале амперметра.

Принцип функционирования цифрового амперметра заключается в том, что аналого-цифровой элемент преобразует значение силы тока в цифровые показатели, которые отображаются на дисплее прибора.  Выдача результата определяется частотой процессора, передающего данные на экран.

Watch this video on YouTube

Схема подключения блока

Почти все они малогабаритные и могут быть установлены в небольшие корпуса блоков питания. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы.

Но новичкам ввод в эксплуатацию подключение в схему ампервольтметра может оказаться задачей проблематичной, т. Сегменты светятся прилично ярко, цветовая гамма подобрана очень удачно.

Измеряемое напряжение В; ток А.

А ток на выходе легко достигал практически одного ампера. Подключение При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения.

За небольшую плату можно узнать, работает ли техника в подходящих условиях. Подав питание на схему, индикатор начнет светиться. Практически близнец прошлого вольтметра, отличается маркировкой проводов и сниженной ценой.

При неправильном подключении табло прибора будет показывать нулевые значения. Подав питание на схему, индикатор начнет светиться.

Чтобы он начал измерять напряжение менее 3 Вольт, нужно выпаять резистор-перемычку R1 и на ее правую по схеме контактную площадку подать напряжение В с внешнего источника выше можно, но нежелательно — стабилизатор DA1 сильно греется. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Толстые провода: черный минус амперметра, красный выход амперметра. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Иногда бывают амперметры без встроенного токоизмерительного шунта.

Простое и красивое техническое решение. Нижняя граница 0,1 В и 0,01 А. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Не каждый сразу поймет, какой провод, куда нужно подключать, а инструкции обычно только на китайском языке. Как подключить Вольтамперметра DC 100v 10a часть 2

https://youtube.com/watch?v=EBE0K_ikKi4

Купил я для своей зарядки любопытный экземпляр китайского вольтметра амперметра, брал на рынке особо не разглядывал, но когда домой принес — три дня голову чухал, как подключить, ибо в инете особо ничего не нашел похожего.Нашел общее описание с кривым переводом на сайте avrobot.ru/product_info.php?products_ >

“Инструкция по подключению:— Красный тонкий провод (vcc): Напряжение питания прибора + 3.5-30 В (Примечание: если измеряемый сигнал меньше, чем 30 В и имеют общий минус питания, то измеряемый сигнал может быть использован также для питания прибора )— Черный тонкий провод (земля): Напряжение питания “-“, “-” измеряемого сигнал 3.5-30 В— Желтый тонкий провод (vin): Измеряемый сигнал “+” (0-100 В)— Красный толстый провод (i +): Вход тока “+” (в серии питания положительные)— Черный толстый провод (i -): C. Вход тока “-” (Провод отрицательного питания)Инструкция по калибровке:Вследствии влияния температуры и изменения параметров электрокомпонентов от времени, возможно появление ненулевых показаний прибора при измерении, что является нормальным явлением. Это не является ошибкой или неисправностью.Решение: Когда прибор отключен от питания, пожалуйста, замкните контакты А и B. Затем сделайте измерение электроэнергии, прибор автоматически откалибруется к нулю. После окончания автоматической калибровки, пожалуйста, отсоедините A и B. После этого используйте прибор в обычном режиме.”

На задней стенке присутствует микросхема MC74HC5950, идут два толстых провода и три тонких.Далее фото и комментарии.

Recommended Posts

Так как на работу измерительных приборов влияют не только их собственные неисправности, но и сбои в подключаемых устройств, иногда нужно заниматься регулировкой.
Переключение производил при отключении подачи питания на нагрузку.
По поводу шунта.
Купив пару штук таких ампервольтметров, один сразу же сжог напряжением 26 вольт. Никакого спама, только полезные идеи! Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания Скачать схему подключения вольтметра амперметра и вентилятора к зарядному устройству С зарядным устройством из компьютерного блока питания все понятно.
В других случаях табло покажет только падение напряжения. На освободившейся контакт, со стороны подстроечника припаивается провод желаемой длины для пробы удобно мм и лучше красного цвета Выпаять СМД резистор Третье. Оснащен настроечными резисторами. Для наглядности результат своих хлопот записал на видеоролик.

Китайский ампервольтметр схема подключения

При токе 10 ампер она уже горячая. Поэтому предлагаю рассмотреть схему подключения классического стрелочного вольтметра и амперметра. Вращая их, можно переделать нулевые значения. Схема YB27VA Прибор конечно же имеет свои погрешности измерения, для подстройки показаний тока и напряжения к близким к реальности на плате установлены два подстроечных резистора, соответственно один для тока и другой для напряжения.

В других случаях табло покажет только падение напряжения. Также желательно, чтобы у прибора присутствовал шунт, для доработки процесса подключения. Чтобы у вас не было дополнительных расходов, перед покупкой амперметра всегда уточняйте у продавца наличие шунта внутри прибора. Если пересчитать делитель, то «показиметр» можно использовать не только как вольтметр — например, можно сделать индикацию тока, температуры и т. Оснащен настроечными резисторами.

В последнее время меня буквально заваливают вопросами, как подключить, куда подключить. У меня вышло мкВ на входе ОУ. Как подключить прибор WR При конструировании зарядных устройств для аккумуляторных батарей, и различных блоков питания, многие радиолюбители используют готовые вольтметры-амперметры китайского производства, которые без особого труда можно купить в интернете, например, на сайте Алиэкспресс.
Как подключить вольтметр амперметр

https://youtube.com/watch?v=ajYs9WhmC2A

Схемы и способы подключения

Часто возникает вопрос, как подключать амперметр, последовательно или параллельно. Соединить рассматриваемое устройство в разрыв электроцепи не составит труда. В целях безопасности такая процедура выполняется, когда отключен источник питания. Заранее нужно удостовериться, что максимальный ток не будет превышать допустимые значения прибора. Такие шкалы дублируются в сопроводительной техдокументации. Когда подается питающее напряжение, снимаются показания. Необходимо выждать, когда прекратит колебаться стрелка. Когда она смещается в обратную сторону, то меняется полярность подключения. При чересчур сильном токе используется допшунтирование.

Схема подсоединения приспособления бывает прямой либо косвенной. В первом случае устройство непосредственно подключают в электроцепь меж источником питания и нагрузкой.

До того, как подключить приспособление необходимо учитывать:

  • постоянный либо переменный ток в электросети;
  • соблюдена ли полярность устройства;
  • стрелка приспособления должна располагаться за серединой шкалы;
  • границы измерения максимально возможных скачков тока в схеме;
  • соответствует ли внешняя среда рекомендованным показателям;
  • находится ли место измерений без влияния вибрации.

Подключение устройства

В цепь постоянного тока

Постоянный ток может проходить через разные электросхемы. В качестве примера можно привести всевозможные зарядные устройства, блоки питания. Чтобы ремонтировать подобные устройства, мастер должен иметь понимание, как подключается амперметр в электроцепь.

В домашних условиях такие навыки также не станут лишними. Они помогают человеку, который не слишком увлекается радиоэлектроникой, самому определять, например, время, на которое хватает зарядки батареи от фотоаппарата.

Чтобы провести эксперимент, понадобится в полной мере заряженный аккумулятор с номинальным напряжением, к примеру, в 3,5 В. Кроме того, нужно использовать лампу такого же номинала, чтобы создать последовательную схему:

  • аккумулятор;
  • амперметр;
  • лампочка.

Запись, которая обозначена на измерительном устройстве, фиксируется. К примеру, осветительный прибор будет потреблять электроэнергию мощностью в 150 миллиампер, а батарея имеет вместимость в 1500 миллиампер-часов. Следовательно, она будет работать в течение 10 часов, выдавая ток в 150 мА.

Цепь постоянного тока

К зарядному устройству

Часто возникает вопрос, как правильно подключать амперметр к зарядному устройству. В процессе применения зарядного устройства возникает надобность в измерении силы тока. Подобное даст возможность осуществлять контроль процесса накопления электроэнергии батареей, и избежать перезарядки с недозарядкой. Вследствие этого сроки эксплуатации аккумуляторной батареи существенно увеличатся.

Вам это будет интересно Особенности стрипперов для проводов

Во время работы большого количества технических приспособлений появляется необходимость в контроле силы тока. Стрелки амперметра либо показатели на мониторе дискретного устройства покажут оператору такой физический параметр. Проводимые замеры нужны, чтобы поддержать рабоче состояние и для сигнализации о появлении аварийной ситуации.

Подсоединение к зарядному устройству

Вольтметр на базе прибора Ц24


На рис.1 представлена принципиальная схема простого вольтметра сетевого напряжения переменного тока. Особенность этого вольтметра в том, что он изготовлен на базе готового вольтметра промышленного изготовления Ц24. Вольтметр Ц24 представляет собой микроамперметр, в корпус которого установлены все необходимые радиоэлементы, для измерения напряжения сети переменного тока 230 В. Этот вольтметр обычно устанавливался в отечественные регулируемые автотрансформаторы выпуска 1960-х годов, предназначенные для питания ламповой радиоаппаратуры. Позднее в таких автотрансформаторах стали применять менее информативный, имеющий малый срок службы, но более стильный по тем временам, линейный газоразрядный индикатор. Выпущенный в 1962 году измеритель Ц24 успешно выполняет свою задачу и в настоящее время.

Промышленный вольтметр включал в себя микроамперметр РА1 (ток полного отклонения стрелки около 1.5 мА, сопротивление обмотки 360 Ом), резисторы R2 – R5 и германиевые диоды VD5, VD6. Вольтметр подвергся доработке: вместо двух параллельно включенных резисторов сопротивлением по 200 кОм был установлен один большей мощности сопротивлением 100 кОм – это резистор R2, а также, был установлен узел на светодиодах для индикации включения в сеть и для подсветки шкалы прибора.

Резисторы R2 – R4 ограничивают ток через микроамперметр РА1, германиевые диоды VD5, VD6 выпрямляют напряжение переменного тока. Использование двух выпрямительных диодов вместо одного исключает заметное дрожание легкой стрелки микроамперметра при ее питании от однополупериодного выпрямителя.

Для индикации включения прибора и подсветки шкалы в корпус микроамперметра установлены два сверхьярких светодиода HL1, HL2. Конденсатор С1 гасит избыток поступающей на светодиоды энергии. Резистор R1 уменьшает броски тока через мостовой выпрямитель VD1 – VD4. Импульсные броски тока, например, при включении в сеть, искрении в розетке, весьма негативно влияют на кристаллы сверхъярких светодиодов, для их уменьшения установлен оксидный конденсатор С2.

Схема и особенности подключения

Чтобы точно произвести замеры и не вывести прибор из строя, его нужно правильно включить в электрическую цепь. Амперметр подключается последовательно к участку сети, на котором нужно произвести замеры. Для единичного измерения используют щупы, а для постоянного снятия показаний устройство подключается при помощи зажимов.

Особенностью амперметра является возможность повысить предел его измерений. Для этого измерительный прибор включается в сеть при помощи таких дополнительных устройств:

  • Для замеров постоянного тока требуется дополнительно подключить магнитный усилитель;
  • При замерах переменного значения в цепь дополнительно включается трансформатор;
  • Подключение через шунт. Этот способ считается универсальным и подходит для измерений не только переменного, но и постоянного тока.

Именно поэтому чаще всего используется этот вид подключения. Рассмотрим подробнее, что это такое.

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление r_А

Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:. Советуем изучить — Классификация систем управления по алгоритму функционирования

Советуем изучить — Классификация систем управления по алгоритму функционирования

I = \frac{U}{R_1+r_А}

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac{r_А}{n\medspace-\medspace 1}

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac{r_А}{n\medspace-\medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:

I_R = I_А\medspace \frac{r_А}{R}

Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_А\medspace \frac{r_А}{R}

Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:

I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение переменного электричества

Любые бытовые приборы, питающиеся от сети, показывают нагрузку, с которой они потребляют ток переменного типа. При рассмотрении вопросов использования энергии стоит помнить про понятие мощности, за которую и производится окончательная оплата в киловаттах. В таком случае амперметр выступает устройством для выполнения косвенных замеров. Таким способом определяется сила тока через стандартную формулу по закону Ома:

P=I*U, где:

  • U является напряжением;
  • I представляет силу тока;
  • Р указывает на рассчитанную мощность.

Бывают случаи, когда утрачивается информация, фиксируемая электрощитком. Для восстановления необходимых параметров и понадобится амперметр. Иногда при обслуживании масштабного здания отсутствует возможность контроля всех приборов, фиксирующих электричество. Проблема решается путем подсоединения усиленного амперметра на выход от щитка, снятия интересуемых замеров. Такие задачи разрешено выполнять только специально обученным людям.

https://youtube.com/watch?v=yT6Myl5y3Gs

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

История происхождения

По названию устройства можно догадаться о том, кто приложил руку к его созданию. Андре-Мари Ампер – блестящий ученый своего времени, многие годы посвятивший электродинамике. Ему принадлежат многие знаковые открытия в этой области:

  • взаимодействие магнитного поля и электрического тока;
  • магнитный эффект катушки с током;
  • введение в научную терминологию понятия кибернетики и кинематики.

Основная заслуга ученого – не разработка прибора, а подготовка научного плацдарма для самой возможности создания амперметра и вольтметра. Поэтому первые упоминания измерительного устройства датируют 20-ми годами XIX века, когда самому Амперу было уже за 50.

Тогда речь шла о самом простом приборе – гальваноскопе, состоящем из закрученной проволоки и магнитной стрелки. Он позволял уловить относительные показатели по градусу отклонения стрелки.


Гальванометр – прототип амперметра

В течение следующих десятилетий конструкция совершенствовалась. В 1884 году отечественными учеными были разработаны более совершенные приборы, однако патенты были переданы в Германию, ввиду недостаточного развития электротехнического производства. Лишь к тому времени были утверждены названия современных величин. В 1881 г. в отношении тока приняли решение о том, в чем измеряется сила – в Амперах.

Как устроены амперметры сегодня? В корпусе с индикацией располагаются измерительная катушка и постоянные магниты, которые выравнивают ее при подаче электрического тока. Чем сильнее отклонение, тем выше показатель прибора. Существует несколько разновидностей, отличающихся конструкцией и областью применения.

К сведению. Классический вид – прибор со шкалой, деления которой обозначают силу тока в Амперах. В зависимости от величины, движущийся элемент поворачивает стрелку на определенный угол.

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике

Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты

Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

— со стрелочным указателем;

— со световым указателем;

— с пишущим устройством;

— электронные устройства.

По принципу действия амперметры разделяются на:

1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.

2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.

3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара. Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.

4. Ферродинамические приборы — состоят из замкнутого магнитопровода, выполненного из ферромагнитного материала, сердечника и неподвижной катушки. Характеризуются высокой точностью измерения, надёжностью конструкции и низкой чувствительностью к воздействию электромагнитных полей.

5. Электродинамические устройства предназначены для замеров величины силы тока в цепях постоянного / переменного токов повышенных частот (до 200 Гц). Они чувствительны к перегрузкам и внешним электромагнитным полям. Но из-за высокой точности замеров их используют в роли контрольных приборов для поверки действующих амперметров.

6. Цифровые амперметры – современная модель приборов, сочетающая преимущества аналоговых приборов. На сегодня такие устройства завоевывали лидирующие позиции. Это объясняется удобством в работе, легкостью использования, небольшими размерами и высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.

Рассмотрим несколько амперметров разных производителей и разных типов:

1. Амперметры Ам-2 DigiTOP

Технические характеристики:

— Количество входов 1

— Измеряемый переменный ток 1 …50 А

— Погрешность измерения 1%

— Дискретность индикации 0,1 А

— напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.

https://youtube.com/watch?v=9DuSWXIcOI8

2. Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Масса 1,2 кг.

Технические характеристики амперметра Э537:

Конечное значение диапазона измерений 0,5 А/1 А

Класс точности 0,5

Область нормальных частот (Гц) 45 — 100 Гц

Область рабочих частот (Гц) 100 — 1500 Гц

Габаритные размеры 140 х 195 х 105 мм

3. Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

Границы замеряемых токов от 0,01 Iн до 1,5 Iн;

Диапазон частот по замеряемым токам от 45 до 850 Герц;

Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;

напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;

Потребляемая устройством мощность не больше чем 4 ВА;

Размерные габариты 144x72x190 мм;

Масса не больше чем 0,55 кг;

Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.