Силовые трансформаторы устройство и принцип действия

Схема трансформатора тока

Схема трансформатора тока состоит из следующих важных элементов:

  1. Нескольких магнитных проводов;
  2. Первичной обмотки;
  3. Вторичной обмотки;
  4. Клеммов;
  5. Выводов;
  6. Стального сердечника;
  7. Реле;

Обмотки трансформатора тока располагаются на повальном сердечнике (что играет роль в возникновении явления электромагнитной индукции).

Если говорить о сердечнике, то он выполняется при помощи электротехнического материала и играет роль магнитного провода.

Клеммы, в свою очередь, имеющие определенную маркировку, главным образом обеспечивают процесс входа и выхода тока с первичной и вторичной обмоток.

А вот реле трансформатора тока, подключенное к кабелю, обеспечивает правильное функционирование устройства, снижая величину тока до необходимого значения.

Строение трансформатора

Основными частями преобразователя напряжения являются:

  • магнитопровод;
  • обмотки высокого и низкого напряжения;
  • бак;
  • вводы и выводы.

К дополнительной аппаратуре относятся:

  • расширительный бак;
  • выхлопная труба;
  • пробивной предохранитель;
  • приборы для контроля и сигнализации.

Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:

  • бронестержневой;
  • броневой;
  • стержневой.

Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно.

У трансформаторного масла две задачи:

  • охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
  • повышение изоляции.

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение

Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).


Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:


Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Определение и виды прибора

Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.

Классификация по количеству фаз:

  • однофазные;
  • трехфазные.

Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).

Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:

  • для питания токоприёмников специального назначения;
  • для присоединения измерительных приборов;
  • для изменения значения напряжения при испытаниях;
  • для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.

Назначение составных частей

Само слово «трансформация» указывает на преобразование чего-то одного в другое. Трансформатор устроен таким образом, что позволяет производить такую рекомбинацию. Это электромагнитный прибор, он состоит из двух основных компонентов:

  • обмотки;
  • сердечника.

Обмотка как основа устройства

Обмотка изготавливается из проволоки, как правило, она медная. Для того чтобы не было короткого замыкания, проволока покрывается электроизоляционным лаком. Затем она равномерно наматывается на бумажный (картонный) каркас и надевается на сердечник. В другом исполнении обмотка наматывается непосредственно на сердечник, но предварительно на него накладывается электроизоляционный материал. Витки должны плотно прилегать друг к другу, тогда катушка будет меньше занимать места.

Обмоткой называют отдельно взятый провод, намотанный на каркас. Их должно быть не менее двух. Причем ту, к которой подводится напряжение, называют первичной, а с которой снимают — вторичной. Первичная используется одна, а вот вторичных может быть сколько угодно, в разумных, конечно, пределах. Вторичные катушки могут располагаться как рядом, так и в виде бутерброда, ложась друг на друга. В этом случае обмотки разделяются друг от друга изоляцией. В этой роли могут выступать промасленная бумага, пленка или ткань.

https://youtube.com/watch?v=F351OMf_hsA

Виды сердечников

Это второй основной компонент. По своей конструкции сердечник должен быть изготовлен из ферромагнитного материала и иметь жесткую конструкцию. Он исполняет роль магнитопровода и каркаса. По внешнему виду сердечники бывают трех видов:

  • броневой;
  • стержневой;
  • тороидальный.

Вид сердечника никак не влияет на электрические показатели, и выбор зависит от производителя, как ему удобнее изготавливать. Способ изготовления броневого или стержневого сердечника может быть следующим:

  • набором пластин;
  • прессованием;
  • намоткой ленты;
  • сбором «подков».

https://youtube.com/watch?v=Z0h-EToXCQM

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Включение трансформаторов на параллельную работу

Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.

Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.

Ну и естественно расчет схем замещения для данных случаев будет разным:

  • 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
  • 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно

Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:

  • повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
  • при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода

Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.

Условия параллельной работы:

  • Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:

В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;

uk1, uk2 — напряжения короткого замыкания в процентах;

Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.

Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
Принадлежность к одной группе присоединения
Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.

Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.

На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.

Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Параметры силового трансформатора

  • Номинальная мощность. Для трансформатора с двумя обмотками параметр равен мощности каждой из них. Для трехобмоточного варианта с разной мощностью обмоток параметр равен большему из показателей;
  • Номинальное напряжение обмоток – характерный параметр для холостой работы;
  • Номинальный ток – показатель, при котором разрешается длительная эксплуатация устройства;
  • Напряжение короткого замыкания — характеристика полного сопротивления обмоток.
  • Потери короткого замыкания;
  • Ток холостого хода – потери материала магнитопровода (реактивные и активные);
  • Потери тока холостого хода;
  • Коэффициент трансформации.

Конструкция

Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

Важнейшие конструктивные части следующие:

  • обмотка;
  • каркас;
  • магнитопровод (сердечник);
  • охлаждающая система;
  • изоляционная система;
  • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

Производство приборов налажено в трех базовых концепциях обмоток:

  • броневой;
  • тороидальной;
  • стержневой.

Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

Как выбрать силовой трансформатор

Выбор силового трансформатора для эксплуатации на предприятиях основан на подборе мощности, а также в соответствии с требованиями к надежности питания. Чтобы обеспечить бесперебойное питание, в некоторых случаях требуется установка нескольких трансформаторов. Мощность каждого устройства подбирается таким образом, чтобы при выходе его из строя, другие устройства были способны взять на себя функции этого недостающего звена, с учетом возможных перегрузок.

Еще один важный критерий – наличие защиты:

  • От внутренних повреждений. Обеспечивается устройствами, контролирующими наличие газов, температуру, давление и уровень масляного охладителя;
  • От перегрузок. Используется так называемая дифференциальная защита, когда на каждой фазе установлены трансформаторы тока.

Общие сведения о трансформаторах

Трансформатор ТМГ-2500/6/0.4

В качестве преобразователей эти устройства традиционно применяются для приведения к приемлемому виду мощностей, пересылаемых по высоковольтным линиям. Для «переброски» на огромные расстояния подходят только сверхвысокие напряжения, при которых ток может иметь приемлемую величину.

Если попытаться передать энергию хотя бы на сотню километров в виде привычного напряжения 380 Вольт – для доставки до потребителя нужной мощности потребуется ток величиной в миллионы Ампер.

Для ее рассеяния нужен провод толщиной примерно с человеческое тело, что на практике реализовать невозможно. Поэтому на генерирующей электричество стороне с помощью другого (повышающего) трансформатора его значение поднимается до 110-ти кВ. В таком виде использовать электроэнергию распределения по жилым строениям и производственным объектам нельзя. Поэтому после доставки по ВВ в распределительных станциях 110 кВ понижаются до 10(6) кВ.

Отсюда они поступают в районные трансформаторные подстанции, где в местном понижающем трансформаторе приобретают свой окончательный вид 380 (220) Вольт. При таких значениях потенциалов энергию легко удается транспортировать по подземному кабелю или воздушному проводу СИП до конечного потребителя. Поэтому однофазный трансформатор играет большую роль в жизни человека.

https://youtube.com/watch?v=FRrhpGX5vVQ

https://youtube.com/watch?v=T1Y-eYDkQoA

Назначение трёхфазного трансформатора

Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.

Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта.

Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока.

Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.

После того, как напряжение будет доставлено потребителям, его следует снизить до необходимой величины.

Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.

Типы и виды трансформаторов

Силовые агрегаты используют в случае преобразования высоковольтного тока и больших мощностей, их не применяют для измерения показателей сети. Установка оправдана в случае разницы между напряжением в сети производителя энергии и цепи, идущей к потребителю. В зависимости от числа фаз станции можно классифицировать как узлы с одной катушкой или многообмоточные устройства.

Однофазный силовой преобразователь устанавливается статически, для него характерны связанные взаимной индукцией обмотки, располагаемые неподвижно. Сердечник выполняется в виде замкнутой рамы, различают нижнее, верхнее ярмо и боковые стержни, где располагаются спирали. Активными элементами выступают катушки и магнитопровод.

Обвивки на стержнях находятся в установленных сочетаниях по числу и форме витков или устраиваются в концентрическом порядке. Наиболее распространена и часто применяется цилиндрическая обвивка. Конструктивные элементы агрегата фиксируют части станции, изолируют проходы между витками, охлаждают части и предупреждают поломки. Продольная изоляция охватывает отдельные витки или их сочетания на сердечнике. Главные диэлектрики используют для предупреждения перехода между заземлением и обмотками.

В схемах трехфазных сетей электричества ставят двухобмоточные и трехобмоточные установки для равномерного распределения нагрузки между входами и выходами или устройства замещения для одной фазы. Трансформаторы с масляным охлаждением содержат магнитопровод с обмотками, которые расположены в баке с веществом.

Обвивки устраиваются на общем проводнике, при этом предусмотрены первичные и вторичные контуры, взаимодействующие благодаря возникновению общего поля, тока или поляризации при перемещении заряженных электронов в магнитной среде. Такая общая индукция затрудняет определение рабочих показателей установки, высокого и низкого напряжения. Используется план замещения трансформатора, при которой обмотки взаимодействуют не в магнитной, а в электрической среде.

Применяется принцип эквивалентности действия рассеивающих потоков работе сопротивлений индуктивных катушек, пропускающих ток. Различают спирали с активным сопротивлением индукции. Второй вид представляет собой магнитосвязанные обвивки, передающие частицы без потоков рассеивания с минимальными препятствующими свойствами.

Watch this video on YouTube

Что такое трансформатор: устройство, принцип работы и назначение

Трансформаторы тока: устройство, принцип действия и типы

Что такое коэффициент трансформации трансформатора?

Устройство, виды и принцип действия асинхронных электродвигателей

Для чего нужен магнитный пускатель и как его подключить

Как сделать катушку Тесла своими руками?

Особенности и виды измерительных трансформаторов

Эти агрегаты предназначаются для использования в оборудовании с переменным током. Нужно это для того, чтобы выполнить изоляцию цепи, в которую подключены измерительные устройства, а также реле от сети с высоким напряжением. В противном варианте прикосновение к ним было бы опасным для жизни либо такие приборы имели бы очень сложную конструкцию.

Также, измерительные трансформаторы способны расширить предел измерения данных устройств измерения.

Измерительные трансформаторы бывают:

  • Трансформатор тока. Данные агрегаты выполняются двухобмоточного типа и представляют собой повышающий трансформатор. Исходная обмотка тут является проводом, который проходит сквозь магнитопровод. В электрическом оборудовании «ТТ» используют для осуществления питания токовых катушек устройств измерения. Обе обмотки намотаны на один сердечник. Первичная катушка подсоединяется последовательно, а вот к вторичной подключаются сами приборы. Если «ТТ» работает, то его вторичная обмотка обязательно должна быть с нагрузкой.
  • Трансформатор напряжения. Конструкция данных агрегатов схожа с силовыми трансформаторами. Первичная и вторичная обмотка тут объединена магнитной цепью, изготовленной из специального ферромагнитного материала. Оптимальный режим работы трансформаторов напряжения считается «режим холостого хода». Обусловлено это отсутствием возможности передавать мощность. Также, отличительной особенностью таких устройств является отсутствие фазового сигнала между напряжениями вторичной и первичной обмотки.

При использовании этих двух устройств можно примерять одно и то же измерительное оборудование, с помощью которого осуществляется контроль параметров тока и напряжения. Вторичная катушка «ТТ» и «ТН» необходимо заземлить. Это позволит уберечь измерительные приборы от случайного появления завышенного напряжения, способного возникнуть при аварийных ситуациях, таких как пробой изоляции и т.д.

Данные устройства классифицируются на конвертор тока в ток, тока в неэлектрическую величину (к примеру, световой поток) и тока в напряжение. К последнему типу относятся трансреакторы либо магнитные трансформаторы.

Вся измеренная данными агрегатами информация способна отображаться в аналоговом или дискретном виде.

Кроме всего этого, измерительные трансформаторы подразделяются согласно:

  • Способу монтажа. Сюда относятся проходные, встраиваемые и опорные агрегаты.
  • Виду установки. Работа на открытом воздухе, в помещении, встроенные в электрическое оборудование, установленные в специальные установки.
  • Согласно числу коэффициента трансформации (один или несколько).
  • Количеству ступеней трансформации. Измерительные трансформаторы могут быть каскадные либо одноступенчатые.
  • Виду первичной обмотки (один или много витков).

Сегодня в электрическом оборудовании напряжение способно достигать отметки в 750 кВ и даже больше. Ну а токи могут доходить до десяток кило Ампер. Для того чтобы их измерять, используют данные устройства, которые предназначаются для изоляции приборов и реле от цепей с высоким током или напряжением.

Также, эти агрегаты уменьшают напряжение и ток до тех величин, которые удобно измерить.

Благодаря измерительным трансформаторам тока и напряжения удаётся подсоединить амперметр, вольтметр, различные приборы релейной защиты, ваттметр, счётчики энергии.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.