Mosfet + tl431 = последовательный компенсационный стабилизатор напряжения с минимальным падением

Содержание

Графики электрических характеристик

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки

. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора

. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться 220 вольтам.

Уровень включения сигнализатора

Ток на электроде управления, когда включается диод HL1 (Uз) задается разделителем R1, R2. Характеристики разделителя определяются по формуле:

R2=2.5хR1/(Uз – 2.5)

Для максимально точной подстройки порога включения можно вместо резистора R2 поставить подстроечный, с показателем раза в 1,5 выше, нежели получилось по расчету. Затем, когда настойка сделана, его можно поменять на постоянный резистор, его сопротивление должно равняться сопротивлению установленной части подстроечного.

Как TL431 проверить схему включения? Чтобы проконтролировать несколько уровней тока будет необходимо 3 этих сигнализатора, каждый из них настраивается на определенное напряжение. Таким способом можно сделать целую линейку шкалы и индикаторов.

Для электропитания цепи индикации, которая состоит из резистора R3 и диода HL1, можно использовать отдельный даже нестабилизированный источник питания. В данном случае контролируемый ток подается на верхний по схеме выход резистора R1, который нужно отсоединить от резистора R3. При этом подключении контролируемый ток может быть в диапазоне от 3-х, до десятков вольт.

Отличие данной схемы от предыдущей заключается в том, что диод подсоединен по-другому. Это подключение называется инверсным, так как диод включается в лишь случае, если схема закрыта. В случае, когда контролируемый ток превышает порог заданный разделителем R1, R2 схема открыта, и ток проходит через резистор R3 и выходы 3 – 2 микросхемы.

На схеме в данном случае происходит падение напряжения до 2 Вольт, которого не хватает для включения светодиода. Чтобы диод гарантированно не включился, последовательно с ним устанавливают два диода.

Если контролируемый ток будет меньше заданного разделителем R1, R2 схема закроется, ток на ее выводе будет значительно больше 2 Вольт, потому диод HL1 включится.

Если нужно проконтролировать лишь изменение тока, то индикатор можно сделать по схеме.

В данном индикаторе использован 2-хцветный диод HL1. Если контролируемый ток превышает заданное значение, включается красный диод, а если ток ниже, то зеленый. В случае если напряжение расположено вблизи этого порога, погашены оба светодиода, потому что передаточное положение стабилитрона имеет некоторую крутизну.

Если нужно отследить изменение какой-то физической величины, то R2 заменяют датчиком, который изменяет сопротивление под воздействием окружающей среды.

Условно на схеме находится одновременно несколько датчиков. Если это фототранзистор, то будет фотореле. Пока света достаточно, фототранзистор открыт, и сопротивление у него небольшое. Потому ток на управляющем выходе DA1 ниже порогового, в результате этого диод не светит.

По мере уменьшения света сопротивление фототранзистора повышается, это приводит к увеличению напряжения на управляющем выходе DA1. Если данное напряжение будет больше порогового (2,5 Вольт), то стабилитрон открывается и загорается диод.

Если подключить терморезистор, вместо фототранзистора, к входу микросхемы, к примеру, серии ММТ, то выйдет индикатор температуры: при уменьшении температуры диод будет включаться.

Порог срабатывания в любом случае задается при помощи резистора R1.

Помимо описанных световых индикаторов, на базе TL431 аналога можно сделать и звуковой индикатор. Для контроля воды, к примеру, в ванне, к схеме подсоединяется датчик из двух пластин нержавейки, которые находятся на расстоянии пары миллиметров между собой.

Если вода дойдет до датчика, то его сопротивление снижается, а микросхема с помощью R1, R2 войдет в линейный режим. Так, возникает автогенерация на резонансной частоте НА1, в этом случае произойдет звуковой сигнал.

Подводя итог, хотелось бы сказать, что все-таки основная сфера использования микросхемы TL434, естественно же, блоки питания. Но, как можно убедиться, возможности микросхемы только этой функцией абсолютно не ограничены, и можно собрать множество устройств.

https://youtube.com/watch?v=TI0MaLWcj2g

Схема электрическая тестера

В виртуальном пространстве интернета схем для такой проверки множество. Разницу между ними усмотрел в том, что одни сообщают – сигнализируют о исправности электронного компонента миганием – загоранием светодиодов, другие создают предпосылки для измерения напряжения на выходе, по величине которого и следует судить о исправности TL431. С одной стороны первые вроде как самодостаточны, в дополнение же ко вторым необходим вольтметр. С другой стороны первым нужно «верить на слово», вторые же сами ничего «не решают», а выдают объективную информацию для принятия решения. К тому-же вольтметр всегда под рукой. Выбрал второй вариант, он к тому же ещё и проще, «цена вопроса» — три постоянных резистора.

За подходящим корпусом, для помещения в него всего необходимого, дело не встанет, на сайте есть статья «Изготовление сетевой вилки с нестандартным корпусом». Начал с оборудования верхней крышки корпуса, для этого понадобились трёхвыводная панелька, кнопка нажимного действия и тетрадный лист в клеточку на котором был начерчен круг в соответствии с диаметром крышки и шилом намечены места установки панельки и кнопки. Вырезанный круг уже стал шаблоном, был помещён на крышку и на ней произведена шилом соответствующая разметка. Далее, тем-же шилом, были проколоты отверстия необходимого диаметра под контакты панельки и кнопки.

Так на верхнюю крышку установлены панелька и кнопка (их контакты загнуты изнутри и пропаяны оловом), на среднюю часть корпуса, в качестве разъёма питания, встал «тюльпан», на нижней крышке разместились штыри для подключения к мультиметру. То, что в качестве корпуса выступили некоторые части (две крышки и горлышко) пластиковой ёмкости (молочной бутылки) вероятно ясно и без пояснений.

Осталось с внутренней стороны крышки, на контактах панельки и кнопки смонтировать саму схему, в первую очередь установил три резистора, во вторую были припаяны все соединительные провода. Проводов получилось неожиданно много, тут спешить не надо — немудрено и перепутать.

В этот раз не стал для дополнительного крепления применять клей, а «посадил» всё на меленькие саморезы. По три штуки на каждом элементе. Так более ремонтопригодно, хотя и ремонтировать тут навряд ли, что-то понадобиться. Пробник собран, раз и на всегда. Осталось проверить его работу и соответственно исправность имеющихся в наличии источников опорного напряжения TL431.

Точностные характеристики [ править | править код ]

Паспортная величина опорного напряжения UREF=2,495 В определяется и тестируется заводом-изготовителем при токе катода 10 мА , замыкании управляющего входа на катод и температуре окружающей среды +25 °C . Порог переключения (точка В на передаточной характеристике) и порог перехода в режим высокой крутизны (точка С) не нормируются . Фактическое опорное напряжение, которое устанавливает конкретный экземпляр TL431 в конкретной схеме, может быть и больше, и меньше паспортного, в зависимости от четырёх факторов:

Технологический разброс . Допустимый разброс UREF при нормальных условиях составляет для различных серий TL431 не более ±0,5 %, не более ±1 % или не более ±2 % ;

Температурный дрейф . Зависимость опорного напряжения бандгапа от температуры имеет форму плавного горба. Если характеристики конкретной микросхемы точно соответствуют конструкторскому расчёту, то вершина горба наблюдается при температуре около +25°С, а UREF при нормальных условиях точно равно 2,495 В ; выше и ниже отметки +25°С UREF плавно снижается на несколько мВ. Для микросхем с заметным отклонением характеристик от расчётных горб сдвигается в области высоких или низких температур, а сама зависимость может принимать монотонно спадающий или монотонно возрастающий характер. Отклонение фактического UREF от паспортных 2,495 В во всех случаях не превышает нескольких десятков мВ ;

Влияние напряжения анод-катод (UKA). С ростом UKA опорное напряжение TL431, необходимое для поддержания фиксированного тока катода, снижается с типичной скоростью в 1,4 мВ/В (но не более 2,7 мВ/В ) . Величина, обратная этому показателю, — примерно 300…1000 ( 50…60 дБ ) — есть верхний предел коэффициента усиления напряжения в области низких частот ;

Влияние тока катода . С ростом тока катода, при прочих равных условиях, UREF возрастает со скоростью примерно 0,5…1 мВ/мА , что соответствует крутизне преобразования в 1…2 А/В .

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения

.Диод 1N 2021 не дает возможность конденсатору разрядиться . Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру

.Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике . Прибор сработал, на экране отображается 9,91 вольта.

Как проверить выходное напряжение стабилизатора?

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования

. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор.TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники . Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока — это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к — линии питания;
  • транзистора, чей эмиттер подключён к — линии через резистор R 2, коллектор к выходу — линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к — линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Звуковой индикатор

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Как проверить мультиметром

TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.

Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.

TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.

Технические параметры

Свойства

Предлагаем рассмотреть максимально допустимые рабочие свойства микросхемы. Если при его применении они будут превышены, то устройство будет неминуемо выходить из строя. Длительная эксплуатация с характеристиками, которые близки к предельному значению, тоже недопустимы. Рассмотрим их подробнее:

  • Напряжение выходного типа, катодное (VКА), по отношению к анодному выводу до 37 В.
  • Вероятные токовые значения – для катодного значения непрерывного на выходе (IКА) составляет 100-150 мА, а для обратного при вхождении от 50 до 10 мА.
  • Типичный импеданс бывает от 0.22 Ом.
  • Мощность рассеиваемого типа (для различных видов упаковки) РD: 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25); 0.8 Вт (SOT-89) и 0,78 Вт (ТО-92).
  • Кристаллическая температура (ТJ) – рабочая от -40 до +70 градусов (для определенных автомобильных версий).
  • Температура хранения составляет от -65 до +155 градусов.

Рекомендуемые эксплуатационные параметры

При рабочих условиях рекомендованные значения применения стабилизатора является входное напряжение опорного типа не более 36 В, катодный ток должен быть от 1 до 100 мА, а также соблюдение режимов температуры при применении. Следует учесть, что при IКА< 5мА эта микросхема может работать нестабильно. Ниже есть электрические параметры устройства, которые замерены при температурном уровне ТА=25 градусов.

Схемы подключения

Требуется разобраться, как работает элемент на примере простой схемы стабилизации, которая состоит непосредственно из стабилитрона и 1 резистора. В катод требуется подключить положительный, а в анод минусовой полюс для запитки. Для подключения микросхемы, на ее управляющий электрод требуется подавать опорное напряжение. Если значение стабилизатора ТL получится больше 2.5 В, то стабилитрон практически сразу откроется и начинает пропускать через себя электрический ток, которым можно запитывать требуемую нагрузку. Его значение начнет расти вместе с увеличением уровня Vin. А вот ток можно определить по формуле IKA = (Vin— Vref)/R. При этом напряжение выходного типа будет стабилизовано на уровне опорного, которое не более 2.5 В и вне зависимости от подаваемого на входе Vin. Максимальное значение IKA  у стабилизатора ограничено не просто 100 мА, но и мощностью корпусного рассеивания.

Расчет параметрической стабилизационной схемы

Регулирование напряжения стабилизации

Для выстраивания схем с возможность регулирования вручную напряжения на выходе, вместо простого первого резистора устанавливают потенциометр. Номинал резистора ограничительного типа, который оказывает сопротивление току на входу, требуется рассчитать по формуле R=(VIN-VКА)/ IIN. При этом IIN = IKA+ IL. Несмотря на преимущества микросхемы, у нее есть достаточно существенный минус – малый ток в нагрузке, который она может выдержать. Для решения такой проблемы в схему требуется подключать полевые или мощные биполярные транзисторы. Примеры разных схем можно увидеть в видео.

Аналоги стабилизатора

Есть микросхемы отечественного производства, которые похожи по своим свойствам на рассматриваемую. Это линейный российский стабилизатор КР142ЕН19. Больше всего подойдут IR943N, ТL432 и LМ431. К устройствам с такой цоколевкой, но немного иными остальными электрическими характеристиками можно отнести НА17431А и КIА431. В роли замены еще можно попробовать применять АРL1431.

Области применения TL431

Выше изложенные варианты применения TL431 могут быть использована в любом месте, где требуется точность настройки выходного напряжения или опорного напряжении. В настоящее время это широко используется в импульсных источниках питания для генерации точного опорного напряжения.

(скачено: 846)

Сразу оговорюсь, что данная статья не панацея. У кого-то это может не пройти.

Для начала я расскажу о TL431, и для чего она служит. TL431 это управляемый стабилитрон с помощью которого можно получить стабилизированное напряжения в широких пределах от 2,5 вольта до 36 вольт. Применяя эту микросхему можно сделать источник опорного напряжения для блоков питания, а также для различных измерительных схем.

Рисунок взят из даташита компании ON Semiconductor

Ниже приведены два варианта даташит для этой микросхемы

  1. Даташит компании ON Semiconductor https://www.onsemi.com/pub/Collateral/TL431-D.PDF
  2. Даташит компании Texas Instruments https://www.ti.com/lit/ds/symlink/tl431.pdf

Цоколевка этой микросхемы наилучшим образом отображена в даташите компании ON Semiconductor

В даташите Texas Instruments обнаружена одна небольшая деталь

На всех рисунках есть одна надпись «top view» это переводится как «вид сверху» при невнимательном просмотре даташит, не зная, что это может обозначать, можно неправильно распаять на плате.

В одной из своих схем я применил микросхему TL431, и она оказалась неисправной. Поискав по форумам я нашел способ проверки этой микросхемы. А в некоторых местах я видел как вызванивают эту микросхему с помощью мультиметра но, увы, все это не то. Я тоже сначала попытался проверить мультиметром но сразу отложил в сторону это мероприятие. И решил попробовать проверить с помощью универсального тестера компонентов , который был ранее приобретен на алиэкспресс.

Во время проверки составил таблицу. Сначала проверил в режиме двухполюсника (если в таблице указаны два вывода, просто необходимо объединить оба вывода вместе).

Результаты измерения первого экземпляра

анод, катод

Измерение 1 – REF; 2 — катод.

Измерение 1 – анод; 2 — катод.

Измерение 1 — REF, катод; 2 – анод.

Измерение 1 – REF; 2 – катод, анод.

Измерение 1 – REF, 2 – анод, 3 – катод.

Результаты измерения второго экземпляра.

анод, катод

Небольшая разница присутствует. Глядя на таблицу замечаешь определенную закономерность. Например, в 4 строке это фактически режим работы TL431 для получения 2,5 вольта. Но самое интересное режим измерения в режиме трехполюсника. В одном случае определяется как транзистор, а во втором случае как отсутствует деталь. Самое интересное в случае когда транзистор определяется: определятся транзистор структуры NPN, вывод REF определятся как эмиттер, анод как база, а катод как коллектор. Между REF и катодом диод катод, которого направлен в сторону катода.

На основании этих данных уже можно судить исправлена микросхема или нет, а также определить цоколевку.

Микросхема TL431

— это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.

Устройство и принцип действия

По внешнему виду устройство напоминает обыкновенный транзистор. Однако, несмотря на три вывода, в состав интегральной схемы (ИС) tl431a входят:

  • операционный усилитель (ОУ);
  • источник опорного (эталонного) напряжения UREF;
  • транзистор, включенный на выходе.

ИС тл431 выполняет контроль такого параметра, как напряжение, и носит название управляемого стабилитрона.

Внимание! Эталонное (опорное) напряжение (UREF) необходимо не для питания цепей микросхемы, а для того чтобы, опираясь на значение этого напряжения, производить стабилизацию на выходе ИС. Если провести аналогию с транзистором, то выполненный с применением биполярных триодов параллельный стабилизатор напряжения (СН) так же обладает тремя выводами:

Если провести аналогию с транзистором, то выполненный с применением биполярных триодов параллельный стабилизатор напряжения (СН) так же обладает тремя выводами:

  • «база» – управляющий вход (R0);
  • «коллектор» – катод (C);
  • «эмиттер» – анод (А).

При работе СН к управляющему входу (R0) и аноду (А) прикладывается положительный потенциал. Ток IКА, протекающий по цепи «катод – анод», представляется стабилизированным выходным сигналом.

Важно! ОУ в составе ИС сравнивает значение UREF с U входящим и на основании этого выполняет стабилизацию. В этой ИМС UREF равно 2,5 В и вырабатывается встроенным источником

Иными словами, транзистор, установленный на выходе ОУ, откроется тогда, когда подаваемое на вход напряжение будет равно или чуть превысит UREF.

Как следует из схемы, на электроде R расположен делитель напряжения из резистивных элементов. Используя внешние делители, реально организовать стабилизацию в интервале Uвх = 2…36 В. При этом максимальный ток может достигать 100 мА.

Интересно. Если накоротко замкнуть выводы первый и третий и не использовать делитель, то напряжение стабилизации такого управляемого стабилизатора будет равно 2,5 В.