Простой лабораторный блок питания на lm317

Содержание

Достоинства и недостатки в сравнении с электронными

Список плюсов стабилизаторов напряжения релейного типа содержит:

  1. Компактность;
  2. Широкий диапазон входных параметров тока (100-280 В для однофазных сетей);
  3. Широкий диапазон рабочей температуры (-40…+40оС);
  4. Относительно небольшой шум при работе;
  5. Невысокую чувствительность к искажениям и частотным изменениям входного тока;
  6. Долговечность (срок службы около 10 лет);
  7. Невысокая стоимость.

К основным недостаткам релейных стабилизаторов относят:

  1. Высокую погрешность стабилизации (+/-5-8% от номинального значения);
  2. Быстрый износ релейных коммутаторов под воздействием механических и импульсных токовых нагрузок;
  3. Ступенчатое выравнивание напряжения;
  4. Обострение скачков выходного напряжения при значительных проседаниях или всплесках характеристик тока на входе;
  5. Снижение скорости реакции стабилизатора при повышении точности выравнивания параметров тока.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Выбираем электронный стабилизатор напряжения: принцип работы и характеристики

Стабилизаторы напряжения для дома: отзывы, какой лучше и по каким критериям делать выбор

Промышленный стабилизатор напряжения: по каким критериям делать выбор?

Буфер

После рассмотрения стабилизаторов цепей накала и высоковольтного стабилизатора, я предлагаю вашему вниманию схему простого высоковольтного буфера:

Его функция в обеспечении постоянного выходного сопротивления и подавление пульсация и помех по питанию. Если его подключить после обычного стабилизатора, то все негативные факторы от обратной связи в источнике питания можно существенно снизить.

Выходное сопротивление такого буфера обратно пропорционально крутизне транзистора и получается достаточно низким. Оно также постоянно в звуковом диапазоне частот.

Большую роль для качества звучания играет выбор конденсаторов!!!

Кстати, я обнаружил, что параллельное соединение конденсаторов не добавляет качества звучания. К примеру, один конденсатор на 20 мкФ звучит лучше, чем параллельное соединение двух конденсаторов на 10 мкФ того же производителя.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания. Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств

Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Заключение.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Электромеханический стабилизатор

Ни для кого не секрет, что бытовые сети питания сегодня не могут обеспечить стабильную эксплуатацию электрических устройств в доме. Перепады и скачки напряжения вполне можно ожидать от сети питания. Для решения этих задач как нельзя лучше подходит электромеханический вид стабилизатора напряжения, так как он стал наиболее популярным на рынке бытовых приборов защиты.

Этот прибор является повышающим трансформатором, который самостоятельно осуществляет регулировку напряжения в сети, в отличие от релейного стабилизатора.

Классификация

Основным критерием деления на классы электромеханических стабилизаторов стали параметры напряжения. Приборы бывают 1-фазными и 3-фазными. Первые применяются чаще в частных постройках и офисах, а трехфазные модели в больших организациях, в промышленности. На сегодняшний день у людей есть возможность строительства больших домов, коттеджей, в которых находится множество бытовых устройств, которые требуют защиты от перепадов напряжения сети.

По конструктивному исполнению стабилизаторы бывают настенными, напольными, настольными. Крепиться могут в любых положениях.

Другим фактором является мощность прибора. Сейчас изготовители предлагают большой выбор моделей. Имеются маломощные приборы до 500 кВА, а также повышенной мощности до 20000 кВА. Нужно сказать, что устройства на 220 и 380 В имеют отличия в числе трансформаторов, расположенных в корпусе устройства.

Преимущества:

  • Широкий интервал напряжения входа.
  • Повышенная точность выхода.
  • Не чувствителен к рабочей частоте.
  • Отсутствие шума.

Недостатки:

  • Присутствуют движущиеся части.
  • Необходимость периодической замены щеточного блока.
  • При снижении напряжения до 180 В, нет гарантии нормальной работы.
  • 1-фазные модели не могут работать при пониженной температуре.
  • Малая скорость работы.

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку

В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3). Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5)

При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением

Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5)

При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Основные характеристики, топология микросхемы

Микросхема lm317 является универсальной. Она может быть использована как стабилизатор с постоянно установленным выходным напряжением и как регулируемый стабилизатор с высоким КПД. МС обладает высокими практическими характеристиками, делающими возможным его использование в различных схемах зарядных устройств или лабораторных блоков питания. При этом вам даже не придется волноваться за надежность работы при критических нагрузках, потому что микросхема оснащена внутренней защитой от короткого замыкания.

Это весьма хорошее дополнение, потому что максимальный выходной ток стабилизатора на lm317 составляет не более 1,5 А. Но наличие защиты не даст вам ее непреднамеренно спалить. Для повышения тока стабилизации необходимо использование дополнительных транзисторов. Таким образом, можно регулировать токи до 10 и более А при использовании соответствующих компонентов. Но об этом поговорим позже, а в таблице ниже представим основные характеристики компонента.

Параметр Значение
Uоп. 1,25 В
Макс разница между Uвых. и Uвх. Не более 40 В
Мин разница между Uвых. и Uвх. Не менее 1,3 В
Макс. Uвых. 37 В
Мин. Uвых. 1,25 В
Iвых. макс. 1,5 А
Iрег До 100 мкА
Пульсации Не более 65 дБ
Тип корпуса ТО-220
Предел рабочих температур От 0 до +125 градусов

Редакторы сайта советуют ознакомиться с особенностями предусилителей для микрофонов и их питании.

LM317 и LM337. Особенности применения. | РадиоГазета

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5

Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Недостатки релейного стабилизатора

Как и любая другая продукция, релейные стабилизаторы тоже имеют определенные недостатки. Недостатки обусловлены принципом работы и схемой построения этого устройства. Его слабым местом работы считается реле. Некачественное реле может стать причиной преждевременного выхода реле из строя. Кроме этого, во время переключения реле вы сможете услышать посторонний шум.

Еще к одному весомому недостатку считается принцип ступенчатого выравнивания тока. Во время переключения обмоток будут происходить значительные скачки напряжения. ВО время переключения реле можно будет увидеть, как мерцают светодиодные лампы.

Простой СН, сделанный своими руками

Параметрический стабилизатор напряжения

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.


LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.


Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.


Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.


СН для бортовой сети

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.


Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.


КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора? RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении. А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители!

Нормы качества сетевого напряжения


Все бытовые приборы в наших домах выпускаются с характеристиками, соответствующими стандартам в области электропитания.

  • Российский ГОСТ 13109-97 регламентирует бытовое электропитание по таким параметрам:
  • уровень входного напряжения — 220В ± 5% с предельным отклонением ± 10%
  • частота — 50 ± 0,2 Гц с предельным отклонением ± 0,4 Гц
  • коэффициент несинусоидальности — до 8% с предельным отклонением до 12%.

Конечно, в зависимости от страны, стандарты могут отличаться. Например, в США в розетках не 220 вольт, а 110.
Но производимая в каждой конкретной стране техника должна соответствовать принятым в ней стандартам.
И она соответствует. Но есть другая проблема. Далеко не всегда параметры сети находятся в полном соответствии с заданным стандартом.
Вот возьмём нашу прекрасную страну. Какие объективные причины препятствуют соблюдению ГОСТа в области электропитания?
Прежде всего, это техническое несовершенство отечественных электросетей, старые трансформаторные подстанции, рост нагрузки на электросети со стороны населения отдельных коттеджных поселков, дачных районов.
Да, в отдельно взятой Москве вполне благополучная обстановка с соблюдением ГОСТа 13109-97.
Но давайте отъедем дальше. Даже совсем недалеко, за МКАД, в какой-нибудь поселок Раменского района (наша комапания «Стабы.ру» часто там устанавливает стабилизаторы).
Что мы там увидим? Что у многих жителей стоят стабилизаторы напряжения. Причем не на отопительные котлы, для которых стабилизатор является обязательным атрибутом даже в крупных городах.
Установлены стабилизаторы на весь дом. Совсем не от хорошей жизни. Просто интенсивная застройка Подмосковья увеличивает нагрузку на местные электросети.
Где-то успевают менять трансформаторы, а где-то они стоят еще с прошлого века.
В этом случае напряжение просаживается и ни о каком соблюдении стандарта уже речь не идёт.
И низкое и высокое напряжение негативно влияет на работу электроприборов
(стиральные машины, компьютеры, холодильники, микроволновые печи, насосы, электрокотлы, системы охраны и т.п.).
Избавиться от возможных финансовых потерь из-за поломки электрооборудования, можно с помощью включения стабилизаторов напряжения.
Они подключаются последовательно между токоприемником, бытовым прибором и электросетью.
Требования к регулируемым стабилизаторам определяются тем же ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

Недостатком планарного исполнения служит большое количество излишних выводов прибора. Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая: