Последовательный многозвенный однополупериодный выпрямитель
Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10…15 мА) токах нагрузки.
Его схема состоит из однополупериодных выпрямителей — звеньев, в следующем алгоритме — одно звено (диод и конденсатор) — просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена — умножитель напряжения в два раза, три — в три раза и т.д.
Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления .
Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.
Конденсаторные установки крм
Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.
При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.
При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.
Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.
Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).
Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.
Рис. 4. Схема умножителя напряжения.
При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.
Снабберы, способные полностью подавлять пики напряжения
Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно «общего» провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.
Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно «общего» провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.
Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.
Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.
Последовательный многозвенный однополупериодный выпрямитель
Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10…15 мА) токах нагрузки.
Его схема состоит из однополупериодных выпрямителей — звеньев, в следующем алгоритме — одно звено (диод и конденсатор) — просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена — умножитель напряжения в два раза, три — в три раза и т.д.
Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления .
Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.
Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.
При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.
При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.
Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.
Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).
Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.
Рис. 4. Схема умножителя напряжения.
При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.
Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно «общего» провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.
Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно «общего» провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.
Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.
Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.
Повышающие преобразователи
Повышающие преобразователи переменного тока
Если на выходе надо получить напряжение выше, чем на входе, то обычно применяются умножители напряжения. Совсем просто выглядит умножитель, если на входе переменное напряжение:
Это схема умножителя Латура-Делона-Гренашера. На выходе мы имеем амплитудное значение входного напряжения, умноженное на количество конденсаторов. Диоды и конденсаторы в схеме должны быть рассчитаны на удвоенную величину амплитудного значения входного напряжения, то есть для осветительной сети они должны выдерживать 620 В с запасом.
Расчет умножителя онлайн
Рассчитаем номинал конденсаторов в умножителе напряжения:
Емкость каждого конденсатора, ФКоличество конденсаторовСила выходного тока, АМаксимально допустимая амплитуда пульсаций выходного напряжения, ВВходная частота, Гц
Максимально допустимую амплитуду пульсаций выходного напряжения следует выбирать не более 5% от требуемого выходного напряжения, иначе схема не будет работать.
Повышающие преобразователи постоянного тока
Если нам необходимо повысить напряжение постоянного тока, то его сначала надо преобразовать в переменный. Для этого можно применить, например, эту схему:
Здесь используется релаксационный генератор на операционном усилителе, который раскачивает усилитель мощности на транзисторах. С выхода усилителя мощности сигнал подается на умножитель напряжения (S), собранный по схеме, приведенной выше. Нужно только иметь ввиду, что на выходе усилителя амплитудное значение сигнала, которое нужно брать для расчета умножителя, рано половине питающего.
Частота генератора задается конденсатором C1 и резистором R9. Если емкость конденсатора 0.06 мкФ, сопротивление резистора 10 кОм, то частота составит около 500 Гц.
Резисторы R7, R8 — по 50 кОм, Конденсаторы C2, C3 — по 1000 мкФ. Они служат для формирования средней точки между плюсом и минусом питания.
Резисторы R1, R2 — по 1 кОм
Резисторы R3, R4 — по 200 Ом
Резисторы R11, R12 — по 10 кОм
Резистор R10 — 3 кОм
Резисторы R5, R6 — по 100 Ом. Они ограничивают силу тока базы транзисторов VT3, VT4.
Резистор R13 — 3 Ом, 1 Вт. Этот резистор ограничивает токовые всплески при переключении транзисторов. Он необходим, так как усилитель работает на емкостную нагрузку, а выходной сигнал имеет прямоугольную форму, для которой характерны броски тока при заряде конденсатора в нагрузке.
Транзисторы VT1, VT2 — КТ502, КТ503.
Транзисторы VT3, VT4 — КТ815, КТ814.
Операционный усилитель D1 — К544УД1.
Схема может отдавать в умножитель ток до 1 А, питается от 15 В.
Столь замысловатая схема раскачки силового усилителя применена для того, чтобы на выходе получить размах напряжения, близкий к напряжению питания при том, что напряжение на выходе операционного усилителя не доходит до напряжения питания.
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 получить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх
220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть
220V, рабочий ток катушки I= 35мА. Возможно я что то не Читать ответ.
Преобразователь однофазного напряжения в трехфазное. Принцип действия. Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.
Инвертор, преобразователь, чистая синусоида, синус. Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.
Резонансный инвертор, преобразователь напряжения повышающий. Принцип р. Сборка и наладка повышающего преобразователя напряжения. Описание принципа работ.
Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис. Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис.
Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная. Расчет и применение колебательных контуров. Явление резонанса. Последовательные .
Детали к схемам
Спецификация к рисункам:
- к рис.2: С1-С4 — К50-20;
- к рис.6: С1-С2 — КВИ-2;
- к рис.7: С1, С2 — МБГЧ; С3-С5 — КСО-2;
- к рис.10: С1-С6 — К15-4;
- к рис.12: С1, С2 — К42У-2, С3, С4 -К50-20.
С.А. Елкин, г. Житомир, Украина. Электрик-2004-08.
Литература:
- Елкин С.А. Бесстартерный запуск ламп дневного света//Э-2000-7.
- Иванов Б. С Электроника в самоделках. М.: ДОСААФ, 1981.
- Казанский И.В. Усилитель мощности КВ радиостанции//В помощь радиолюбителю. — Выпуск 44. — М.: ДОСААФ, 1974.
- Костюк А. Усилитель мощности для СВ радиостанции//Радиолюбитель. -1998. — №4. — С.37.
- Кузинец Л.М. и др. Телевизионные приемники и антенны: Справ. — М.: Связь, 1974.
- Поляков В.Т. Радиолюбителям о технике прямого преобразования. — М.: Патриот, 1990.
- Пляц О.М. Справочник по электровакуумным, полупроводниковым приборам и интегральным микросхемам. -Минск: Высшая школа, 1976.
- Сотников С. Неисправности умножителя напряжения и цепей фокусиров-ки//Радио. — 1983. — №10. — С.37.
- Садченкова Д Умножители напря-жения//Радіоаматор. — 2000. — №12. -С.35.
- Фоменков А.П. Радиолюбителю о транзисторных телевизорах. — М.: ДОСААФ, 1978.
- Штань А.Ю, Штань Ю.А. О некоторых особенностях применения ионизаторов воздуха//Радіоаматор. — 2001. — №1. — С.24.
- 12. Ященко О. Устройство для проверки и восстановления кинескопов//Радио. — 1991. — №7. — С.43.
Электрик-2004-09.
УМНОЖИТЕЛИ НАПРЯЖЕНИЯ
В радиолюбительской практике часто требуется несколько напряжений для питания слаботочных узлов (специализированных микросхем, предварительных усилителей и т.п.), а имеющийся источник питания выдает одно напряжение. Чтобы не искать трансформатор с дополнительными обмотками, можно воспользоваться схемами умножения напряжения. Схема ниже:
Предлагаем еще несколько схем умножения напряжения. Изображена мостовая двухтактная схема удвоения напряжения. В этой схеме частота пульсаций выпрямленного напряжения равна удвоенной частоте сети (fn=2fc), обратное напряжение на диодах в 1,5 раза больше выпрямленного, коэффициент использования трансформатора — 0,64. Ее можно представить в виде двух последовательно включенных однополупериодных схем, работающих от одной обмотки трансформатора и подключенных к общей нагрузке. Если среднюю точку (точку соединения конденсаторов) подключить к общему проводу, получится двухполярный источник с выходным напряжением ±U. Вторая схема удвоения напряжения показана на рисунке 2, который вы видите ниже:
В ней вход (вторичная обмотка трансформатора) и выход имеют общую точку, что в ряде случаев может оказаться полезным. Здесь в течение отрицательного полупериода входного напряжения конденсатор С1 заряжается через диод VD2 до напряжения, равного амплитудному значению U-1. Во время положительного полупериода диод VD2 закрыт, а конденсатор С1 оказывается включенным последовательно с вторичной обмоткой Т1, поэтому конденсатор С2 через диод VD1 заряжается до удвоенного значения напряжения. Добавив к данной схеме еще один диод и конденсатор, получим варианты утроителей напряжения, которые представлены на следущих рисунках:
Схему на рис.2 можно каскадировать и получать весьма высокие напряжения. Такой каскадный умножитель представлен на рисунке:
В этой схеме все конденсаторы, за исключением С1, заряжаются до удвоенного напряжения Ui (Uc=2Ui), а С1 заряжается только до Ui. Таким образом, рабочее напряжение конденсаторов и диодов получается достаточно низким. Максимальный ток через диоды определяется выражением:lmax=2,1IH, где lH—ток, потребляемый нагрузкой. Необходимая емкость конденсаторов в этой схеме определяется по приближенной формуле:
С=2,85N*Iн/(Кп*Uвых), Мкф
где N—кратность умножения напряжения; IН — ток нагрузки, мА; Кп — допустимый коэффициент пульсаций выходного напряжения, %; Uвыlx—выходное напряжение, В.
Емкость конденсатора С1 необходимо увеличить в 4 раза по сравнению с расчетным значением (хотя в большинстве случаев хватает и двух-трех- кратного увеличения). Конденсаторы должны быть с минимальным током утечки (типа К73 и аналогичные).
Умножать напряжение можно и с помощью мостовых выпрямителей. Схема ниже на рисунке 6:
Здесь удобно взять малогабаритные выпрямительные мосты, например, серий RB156, RB157 и аналогичные. Конденсаторы СЗ…С6 (и далее) — емкостью 0,22…0,56 мкФ. Следует учитывать возрастание напряжения на обкладках конденсаторов и соответствующим образом выбирать их рабочее напряжение. Это же относится и к конденсаторам фильтра С1, С2.
При совсем малых токах нагрузки можно воспользоваться схемой одно- полупериодного умножителя:
В зависимости от необходимого выходного напряжения Uвых=0,83Uo определяется количество каскадов N по приближенной формуле:N=0.85U0/U1 где U1 — входное напряжение.
Емкость С конденсаторов С1…СЗ рассчитывается: С=34Iн*(Т+2)/U2 где lH —ток нагрузки умножителя; U2 — падение напряжения на R1 (обычно выбирается в пределах 3…5% от U-1).
Снизить коэффициент пульсаций в умножителях напряжения можно с помощью транзисторных фильтров (рис.8),
Которые существенно уменьшают пульсации и шумы выходного напряжения и характеризуются весь малыми массогабаритными показателями. Сейчас выпускаются мощные транзисторы с допустимым напряжением 1,5 кВ и выше при токе нагрузки до 10 А. Диоды выбираются из условия Uобр=1,5U0 и Iмакс=2Iвых — Емкость С конденсаторов С1, С2 рассчитывается по приближенной формуле:
С=125Iн/U0
Сопротивление резистора R1 выбирается в пределах 20… 100 Ом. Емкость конденсатора СЗ определяется из выражения:
С3=0,5*10^6/(m*fc*R1)
где m — число фаз выпрямителя (т=2); fc — рабочая частота умножителя (fc=50 Гц).
Сопротивление R2 подбирается экспериментально (в пределах 51…75 кОм), поскольку оно зависит от коэффициента усиления по току транзистора VT1. В фильтре можно использовать отечественные транзисторы КТ838, КТ840,КТ872, КТ834 и аналогичные.
Форум по умножителям
Генератор с удвоением напряжения на выоде
На рисунке 4 показан генератор с выходным каскадом, в котором осуществляется удвоение выходного напряжения. При закрытом транзисторе VT3 к светодиоду приложено только небольшое по величине напряжение питания.
Электрическое сопротивление светодиода велико в силу ярко выраженной нелинейности ВАХ и намного превышает сопротивление резистора R6. Поэтому конденсатор С2 оказывается подключенным к источнику питания через резисторы R5 и R6.
Рис. 4. Схема низковольтного преобразователя с удвоением выходного напряжения.
Хотя вместо германиевого диода использован резистор R6, принцип работы удвоителя напряжения остается тем же: заряд конденсатора С2 при закрытом транзисторе VT3 через резисторы R5 и R6 с последующим подключением заряженного конденсатора последовательно с источником питания.
При приложении удвоенного таким образом напряжения динамическое сопротивление светодиода на более крутом участке ВАХ становится на время разряда конденсатора порядка 100 Ом и менее, что намного ниже сопротивления шунтирующего конденсатор резистора R6.
Расширить рабочий диапазон питающих напряжений (от 0,8 до 6 В) позволяет использование резистора R6 вместо германиевого диода. Если бы в схеме стоял германиевый диод, напряжение питания устройства было бы ограничено величиной 1,6…1,8 В.
При дальнейшем увеличении напряжения питания ток через светодиод и германиевый диод вырос бы до неприемлемо высокой величины и произошло бы их необратимое повреждение.
Умножители напряжения на диодах — схемы включения, варианты подключения, утроители, умножители на 4, 5, 6, 8 | РадиоДом
Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 вольт постоянного тока из 100 вольт переменного тока источника, а с помощью умножителя на восемь — 800 вольт постоянного. Это если не учитывать падение напряжения на диодах (0,7 вольт на каждом).В практике на схемах любая нагрузка будет немного уменьшенной от полученных расчетов. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна количеству звеньев.
Примечание: отличная нагрузочная способность.
Примечание: универсальность.Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.
Отличная нагрузочная способность.
Отличная нагрузочная способность.
Отличная нагрузочная способность.
Симметричная схема, хорошая нагрузочная способность.
Симметричная схема, хорошая нагрузочная способность.
Симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.
Отличная нагрузочная способность.
отличная нагрузочная способность.
Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки.
Симметричная схема, отличная нагрузочная способность.
Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки.
Превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.
Нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.
Наличие дополнительного маломощного выхода с удвоенным напряжением питания.
Хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.
Выпрямители с удвоением напряжения
Автодром Виллар
Рисунок 1 . Автодром Виллар
Схема Вилларда , задуманная Полем Ульрихом Виллардом , состоит просто из конденсатора и диода. Несмотря на то, что он имеет большое преимущество в простоте, его выходной сигнал имеет очень плохие характеристики пульсации . По сути, схема представляет собой схему диодного зажима . Конденсатор заряжается за отрицательные полупериоды до пикового напряжения переменного тока ( V pk ). Выход представляет собой суперпозицию входного сигнала переменного тока и постоянного постоянного тока конденсатора. Эффект схемы заключается в смещении значения постоянного тока формы волны. Отрицательные пики формы волны переменного тока «фиксируются» диодом до 0 В (фактически — V F , небольшое прямое напряжение смещения диода), поэтому положительные пики выходной волны составляют 2 В пик . Пульсации от пика до пика огромная 2 V рк и не могут быть , если схема не будет эффективно превращена в одну из более сложных форм. Это схема (с перевернутым диодом), используемая для подачи отрицательного высокого напряжения на магнетрон в микроволновой печи.
Трасса Грайнахера
Рисунок 2 . Трасса Грайнахера
Greinacher удвоитель напряжения является существенным улучшением по сравнению с схемой Villard за небольшую плату в дополнительных компонентах. Пульсации значительно уменьшаются, номинально они равны нулю в условиях нагрузки разомкнутой цепи, но время прохождения тока зависит от сопротивления нагрузки и емкости используемых конденсаторов. Схема работает, следуя за каскадом ячейки Виллара с тем, что по сути является пиковым детектором или каскадом детектора огибающей . Ячейка пикового детектора устраняет большую часть пульсаций, сохраняя при этом пиковое напряжение на выходе. Схема Грейнахера также широко известна как удвоитель напряжения.
Рисунок 3 . Счетверитель напряжения — две ячейки Грейнахера противоположных полярностей
Эта схема была впервые изобретена Генрихом Грайнахером в 1913 году (опубликована в 1914 году) для обеспечения 200–300 В, необходимых для его недавно изобретенного ионометра , при этом 110 В переменного тока, подаваемого на электростанции Цюриха того времени, было недостаточно. Позже он расширил эту идею до каскада умножителей в 1920 году. Этот каскад ячеек Грейнахера часто неточно называют каскадом Виллара. Его также называют умножителем Кокрофта-Уолтона в честь ускорителя частиц, построенного Джоном Кокрофтом и Эрнестом Уолтоном , которые независимо открыли эту схему в 1932 году. Концепция этой топологии может быть расширена до схемы учетверения напряжения с использованием двух ячеек Грейнахера противоположного направления. полярности питаются от одного и того же источника переменного тока. Выходной сигнал принимается через два отдельных выхода. Как и в случае с мостовой схемой, невозможно одновременно заземлить вход и выход этой схемы.
Схема Делона
Рисунок 4 . Мостовой (Делон) удвоитель напряжения
Схема Делона использует для удвоения напряжения; следовательно, его также называют удвоителем напряжения. Когда-то эта форма цепи обычно использовалась в телевизорах с электронно-лучевой трубкой, где она использовалась для обеспечения питания сверхвысокого напряжения (EHT). Генерация напряжения свыше 5 кВ с помощью трансформатора имеет проблемы с безопасностью с точки зрения бытового оборудования и в любом случае неэкономична. Однако для черно-белых телевизоров требовалось напряжение 10 кВ, а для цветных — даже больше. Удвоители напряжения использовались либо для удвоения напряжения на обмотке eht сетевого трансформатора, либо подавались на форму волны на катушках обратного хода линии .
Схема состоит из двух полуволновых пиковых детекторов, работающих точно так же, как и пиковая детекторная ячейка в цепи Грейнахера. Каждая из двух ячеек пикового детектора работает на противоположных полупериодах входящего сигнала. Поскольку их выходы включены последовательно, выходное напряжение вдвое превышает пиковое входное напряжение.
Умножитель напряжения ⋆ diodov.net
При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.
Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.
Однако применяя умножитель напряжения можно повысить его до 1000 В и более.
Удвоитель напряжения
Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.
В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.
Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.
Теперь давайте рассмотрим конкретные примеры и схемные решения.
Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.
В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.
Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.
Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.
Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.
К тому же мультиметром возможно измерить лишь действующие значения переменных величин.
Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.
После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.
Умножитель напряжения многократный
Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.
https://youtube.com/watch?v=J-ugejUno9U
Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.
В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.
К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.
По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.
Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.
Модели для ионизаторов воздуха
У моделей очень часто встречаются канальные конденсаторы, у которых высокая емкость. Данные устройства выделяются быстрым процессом преобразования, а рабочая частота у них составляет примерно 33 Гц. Расширители у моделей используются проводникового типа. Они способны работать в экономном режиме и потребляют мало электроэнергии.
Стабилизаторы всегда устанавливаются контактного типа. Некоторые модели работают от импульсного триода. Приводимость составляет не менее 10 мк. Если рассматривать удвоитель постоянного напряжения, то у него имеются переходные конденсаторы, у которых низкая емкость. Показатель чувствительности в данном случае стартует от 6 мВ. Данные устройства замечательно подходят для компараторов.