Тиристорный регулятор трехфазного напряжения схема

Содержание

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.

Так выглядят регуляторы мощности, которые я использую много лет.

to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Принцип действия тиристора

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?

Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.

После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.

См. также: Подключение участка к электричеству vfnthbfk

Область использования тиристорных устройств

На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В

Схема собиралась не раз, работает без наладки и других проблем

Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.

Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.

Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.

С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток. Симистор (тиристор) вместо реле.

Как проверить тиристор от отдельного источника управляющего напряжения?

Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.

Смотрим рисунок №3.

4. Урок №4 — «Тиристор в цепи переменного тока. Импульсно — фазовый метод»

5. Урок №5 — «Тиристорный регулятор в зарядном устройстве»

В этих уроках, в простой и удобной форме, излагаются основные сведения по полупроводниковым приборам: динисторам и тиристорам.

Что такое динистор и тиристор, выды тиристоров и их вольт — амперные характеристики, работа динисторов и тиристоров в цепях постоянного и переменного тока, транзисторные аналоги динистора и тиристора.

А так же: способы управления электрической мощностью переменного тока, фазовый и импульсно-фазовый методы.

Каждый теоретический материал подтверждается практическими примерами. Приводятся действующие схемы: релаксационного генератора и фиксированной кнопки, реализованных на динисторе и его транзисторном аналоге; схема защиты от короткого замыкания в стабилизаторе напряжения и многое другое.

Особенно интересна для автолюбителей схема зарядного устройства для аккумулятора на 12 вольт на тиристорах. Приводятся эпюры формы напряжения в рабочих точках действующих устройств управления переменным напряжением при фазовом и импульсно-фазовом методах.

Чтобы получить эти бесплатные уроки подпишитесь на рассылку, заполните форму подписки и нажмите кнопку «Подписаться».

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод. Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем. Освежить память о p-n переходе можно .

Принцип работы

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным. Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику. К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора. При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2). После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3). В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние. При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

Напряжение включенияПрямое напряжениеОбратное напряжение

допустимое напряжениеМаксимально допустимый прямой токОбратный токМаксимальный ток управления электродаВремя задержки включения/выключенияМаксимально допустимая рассеиваемая мощность

Общие настройки трехфазного реле

Чтобы реле контроля напряжения 3-фазное работало, нужно осуществить некоторые настройки. После подключения прибора к электрической цепи к нему подают питание, и на дисплее появляется информация:

  • Если изображение на дисплее мигает, это говорит об отсутствии напряжения.
  • Появление черточек обозначает нарушение чередования фаз или отсутствие одной.
  • При длительном мигании дисплея следует заподозрить отсутствие подключения контактора.

Настроить трехфазное реле контроля напряжения можно двумя встроенными кнопками, на них изображены треугольники. Они размещаются с правой стороны устройства: верхняя кнопка с треугольником вверх, а нижняя – вниз. Чтобы получить максимальный предел отключения, нужно нажать на верхнюю кнопку. Она задерживается на несколько секунд. После этого в центральном экране появляется цифра с отображением заводского уровня. Кнопку нужно нажимать до тех пор, пока не появится нужное значение. После настроек в течение десяти минут прибор будет автоматически запрограммирован.

Как выставить время повторного отключения

С правой стороны дисплея находится кнопка управления с нарисованными часами. Ее нужно нажать и держать, пока не появится заводское значение. Временной интервал составляет 15 секунд. Это значит, что после нормализации напряжения прибор вновь включит электроэнергию через этот отрезок времени.

Показатели можно уменьшить. Достаточно нескольких нажатий на верхнюю или нижнюю кнопку, чтобы появились необходимые параметры.

Как провести настройку перекоса фазы

Для настройки необходимо одновременно нажать на обе треугольные кнопки. После этого на дисплее можно увидеть 50В. Это значит, что питание в сеть не будет подаваться, когда перекос фаз достигнет этого значения. Чтобы уменьшить или увеличить параметр, нужно выставить время одной из кнопок.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

  • биполярном транзисторе;
  • полевом транзисторе;
  • тиристоре;
  • симметричном тиристоре (симисторе, триаке).

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Варианты схем регулятора мощности паяльника

Необходимые элементы для монтажа регулятора мощности паяльника своими руками

Тиристор

Симистор

Внешний вид резистора и способ отображения на схеме

Конденсатор

Диод

Диод — обозначение

Стабилитроны

Микроконтроллер

Схема регулятора мощности паяльника с выключателем и диодом

Схема с выключателем и диодом

  • диод (1N4007);
  • выключатель с кнопкой;
  • кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник);
  • провода;
  • флюс;
  • припой;
  • паяльник;
  • нож.

Сборка двухступенчатого регулятора на весу:

  1. Зачистить и залудить провода. Залудить диод.
  2. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик.
  3. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
  4. Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва.
  6. Провода можно спаять. Подключить к клеммам, затянуть винты.
  7. Собрать выключатель.

Регулятор мощности на тиристоре своими руками

Тиристорный регулятор

Схема с маломощным тиристором и световым индикатором

Тиристор VS2 КУ101Е
Резистор R6 СП-04 / 47К
Резистор R4 СП-04 / 47К
Конденсатор С2 22 мф
Диод VD4 КД209
Диод VD5 КД209
Индикатор VD6

Регулятор на тиристоре КУ202Н

Тиристор VS1 КУ202Н
Резистор R6 100 кОм
Резистор R1 3,3 кОм
Резистор R5 30 кОм
Резистор R3 2,2 кОм
Резистор R4 2,2 кОм
Резистор переменный R2 100 кОм
Конденсатор С1 0,1 мкФ
Транзистор VT1 КТ315Б
Транзистор VT2 КТ361Б
Стабилитрон VD1 Д814В
Диод выпрямительный VD2 1N4004 или КД105В

Сборка тиристорного (симисторного) регулятора мощности на печатной плате:

  1. Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор — подключить к лампе накаливания.
  9. Собрать устройство.

https://youtube.com/watch?v=4DG4_w2fe4E

Схема регулятора мощности паяльника с тиристором и диодным мостом

Схема с тиристором и диодным мостом

Резистор R1 42 кОм
Резистор R2 2,4 кОм
Конденсатор C1 10 мк х 50 В
Диоды VD1-VD4 КД209
Тиристор VS1 КУ202Н

Регулятор мощности паяльника на симисторе

Конденсатор C1 0,1 мкФ
Резистор R1 4,7 кОм
Резистор VR1 500 кОм
Динистор DIAC DB3
Симистор TRIAC BT136–600E
Диод D1 1N4148/16 B
Светодиод LED

Регулятор мощности на симисторе с диодным мостом

Схема регулятора на симисторе с диодным мостом

Регулятор на симисторе — вариант монтажа на плате

Регулятор с симистором и диодным мостом — образец

Регулятор мощности паяльника с симистором на микроконтроллере своими руками

Схема симисторного регулятора с микроконтроллером

Конденсатор C1 0.47 мкФ
Конденсатор C2 1000 пФ
Конденсатор C3 220 В х 6.3 мкФ
Резистор R1 22 кОм
Резистор R2 22 кОм
Резистор R3 1 кОм
Резистор R4 1 кОм
Резистор R5 100 Ом
Резистор R6 47 Ом
Резистор R7 1 МОм
Резистор R8 430 кОм
Резистор R9 75 Ом
Симистор VS1 BT136–600E
Стабилитрон VD2 1N4733A (5.1v)
Диод VD1 1N4007
Микроконтроллер DD1 PIC 16F628
Индикатор HG1 АЛС333Б

Преимущества и недостатки

Сегодня на профильном рынке начинают лидировать по продажам симисторные регуляторы. В отличие от тиристоров симисторы имеют двухстороннее действие, поскольку у них есть катод и анод. Это позволяет изменять в процессе работы направление тока.

Стоит отметить, что заменять их на контакторы, реле или пускатели нецелесообразно. Связано это с долговечностью симистора, а также многими другими положительными качествами такого приспособления. Установив его на схему, он практически никогда не выйдет из строя. Также положительным моментом можно считать полное отсутствие искры при работе. Анализировались схемы на симисторах, которые по себестоимости были значительно дешевле аналогов, базирующихся на транзисторах и микросхемах.

Таким образом, использование симисторов имеет ряд значительных преимуществ:

  • большой срок эксплуатации (детали практически не изнашиваются);
  • цена прибора невысока;
  • при работе можно избежать механических контактов.

Имеются и специфические минусы:

  • посторонние помехи и шумы;
  • устройство имеет большую чувствительность к переходным процессам;
  • во избежание перегрева прибор устанавливается в радиатор;
  • использование на больших частотах невозможно.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.