Эквиваленты транзистора, динистора, тиристора, варикапа, замена деталей

Содержание

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот

Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.)

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Как проверить динистор?

Сравнив статистику посещения сайта за два месяца ноябрь и декабрь года , в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины? Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs. Амбициозная цель компании MediaTek — сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик — порог входа очень низкий. Компания Компэл, приглашает вас принять участие в семинаре и тренинге? Светодиод — это диод который излучает свет.

Сдох блок розжига для газовой плиты. Схема такая. Изображение Определил, что сдох динистор. Маркировка KG. Даташит.

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Читать также: Оборудование для сверления отверстий в бетоне

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Как графически обозначается динистор на схеме

Четкого стандарта, регламентирующего изображение этого элемента на схеме, не существует. Самый распространенный вариант – изображение диода + дополнительная перпендикулярная черта. На зарубежных описаниях этот элемент может обозначаться словами trigger diode, буквами VD, VS, V, D.

Условное графическое изображение симметричных динисторов имеет несколько вариантов.

Маркировка, наносимая на корпус динистора, состоит из букв и цифр. Наиболее популярны устройства российского производства КН102 (А…И). Первая буква в обозначении характеризует материал, из которого изготовлено устройство. К – кремний. Число из трех цифр обозначает номер разработки. Буквы, стоящие в конце маркировки, являются буквенными кодами напряжения включения.

Область применения динистора

  1. Динистор может использоваться для формирования импульса предназначенного для отпирания тиристора, благодаря своей несложной конструкции и невысокой стоимости динистор считается идеальным элементом для применения в схеме тиристорного регулятора мощности или импульсного генератора
  2. Еще одно распространенное применение динистора – это использование в конструкции высокочастотных преобразователей для работы с электрической сетью 220В для питания ламп накаливания, и люминесцентных ламп в компактном исполнении (КЛЛ) в виде компонента, входящего в устройство «электронного трансформатора» Это так называемый DB3 или симметричный динистор. Для этого динистора характерен разброс пробивного напряжения. Устройство используется для обычного и поверхностного монтажа.

Реверсивно-включаемые мощные динисторы

Широкое распространение получила разновидность динисторов, обладающих реверсивно-импульсными свойствами. Эти приборы позволяют выполнить микросекундную коммутацию в сотни и даже в миллионы ампер.

Реверсивно-импульсные динисторы (РВД) используются в конструкции твердотельного ключа для питания силовых установок, РВД и работают в микросекундном и субмиллисекундном диапазонах. Они коммутируют импульсный ток до 500 кА в схемах генераторов униполярных импульсов в частотном режиме многократного действия.

Рис. №3. Маркировка РВД используемого в моноимпульсном режиме.

Внешний вид ключей собранных на основе РВД

Рис. №4. Конструкция бескорпусного РВД.

Рси.№5. Конструкция РВД в метало-керамическом таблеточном герметичном корпусе.

Число РВД зависит от величины напряжения для рабочего режима коммутатора, если коммутатор рассчитан на напряжение 25 kVdc, то их число – 15 штук. Конструкция коммутатора на основе РВД схожа с конструкцией высоковольтной сборки с последовательно соединенными тиристорами с таблеточным устройством и с охладителем. И прибор, и охладитель выбираются с учетом рабочего режима, который задается пользователем.

Структура кристалла силового РВД

Включение прибора происходит после изменения на короткое время полярности внешнего напряжения и прохождения через транзисторные секции короткого импульсного тока. Происходит инжектирование электронно-дырочной плазмы в n-базу, по плоскости всего коллектора создается тонкий плазменный слой. Насыщающийся реактор L служит для разделения силовой и управляющей части цепи, через доли микросекунды происходит насыщение реактора и к прибору приходит напряжение первичной полярности. Внешнее поле вытягивает дырки из слоя плазмы в p-базу, что приводит к инжекции электронов, происходит независимое от величины площади переключение прибора по всей его поверхности. Именно благодаря этому имеется возможность производить коммутацию больших токов с высокой скоростью нарастания.

Рис. №6. Полупроводниковая структура РВД.

Рис. №7. Типичная осциллограмма коммутации.

Перспектива использования РВД

Современные варианты динисторов изготовленных в доступном в настоящее время диаметре кремния позволяют коммутировать ток величиной до 1 млА. Для элементов в основу, которых положен карбид кремния характерна: высокая насыщенность скорости электронов, напряженность поля лавинного пробоя с высоким значением, утроенное значение теплопроводности.

Их рабочая температура намного выше из-за широкой зоны, вдвое превышающая радиационная стойкость – вот все основные преимущества кремниевых динистров. Эти параметры дают возможность повысить качество характеристик всех силовых электронных устройств, изготовленных на их основе.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Сегодня рассмотрим динистор, принцип его работы, обозначение, в каких схемах встречается и для чего он нужен. Динистор относиться по своему составу к полупроводникам, точнее к тиристорам, и имеет в своем составе целых три p-n перехода. У него нет управляющего электрода, и его применение в электронике, довольно скудно.

Эквивалент тиристора

Тиристоры, динисторы и им подобные элементы способны при весьма незначительных внутренних потерях управлять большими мощностями, подводимыми к нагрузке.

Тиристоры — приборы, обладающие двумя устойчивыми состояниями: состоянием низкой проводимости (проводимость отсутствует, прибор заперт) и состоянием высокой проводимости (проводимость близка к нулю, прибор открыт). Представители класса тиристоров :

  • диодные тиристоры (динисторы, диаки), имеющие два вывода (анод и катод), управляемые путем подачи на электроды напряжения с высокой скоростью его нарастания или повышения приложенного напряжения до величины, близкой к критической;
  • триодные тиристоры (тринисторы, триаки), трехэлектродные элементы, управляющий электрод которых служит для перевода тиристора из закрытого состояния в открытое;
  • тетродные тиристоры, имеющие два управляющих электрода;
  • симметричные тиристоры — симисторы, имеющие пятислой-ную структуру. Иногда этот полупроводниковый прибор называют семистором.

Диодные тиристоры (динисторы), ассортимент которых не столь велик, различаются, главным образом, максимально допустимым постоянным прямым напряжением в закрытом состоянии.

Так, для динисторов типов КН102А, Б, В, Г, Д, Е, Ж, И (2Н102А — И) значения этих напряжений составляют, соответственно, 5, 7, 10, 14, 20, 30, 40, 50 В при обратном токе не более 0,5 мА. Максимально допустимый постоянный ток в открытом состоянии для этих полупроводниковых приборов равен 0,2 А при остаточном напряжении в открытом состоянии 1,5 В.

На рис. 1 приведена эквивалентная схема низковольтного динистора. Если принять R1=R3=100 Ом, можно получить динистор с управляемым (с помощью резистора R2) напряжением переключения от 1 до 25 В [Войцеховский Я., Р 11/73-40, Р 12/76-29]. При отсутствии этого резистора и при условии R1=R3=5,1 кОм напряжение переключения составит 9 Б, а при R1=R3=3 кОм —12 В.

Аналог тиристора р-п-р-п-структуры, описанный в книге Я. Войцеховского, показан на рис. 2. Буквой А обозначен анод; К — катод; УЭ — управляющий электрод. В схемах (рис. 1, 2) могут быть использованы транзисторы типов КТ315 и КТ361.

Необходимо лишь, чтобы подводимое к полупроводниковому прибору или его аналогу напряжение не превышало предельных паспортных значений. В таблице (рис. 2) показано, какими величинами R1 и R2 следует руководствоваться при создании аналога тиристора на основе германиевых или кремниевых транзисторов.

Рис. 2. Аналог тиристора.

В разрывы электрической цепи, показанные на схеме (рис. 2) крестиками, можно включить диоды, позволяющие влиять на вид вольт-амперной характеристики аналога. В отличие от обычного тиристора, его аналогом (рис. 2) можно управлять, используя дополнительный вывод — управляющий электрод УЭдоп, подключенный к базе транзистора VT2 (верхний рисунок) или VT1 (нижний рисунок).

Обычно тиристор включают кратковременной подачей напряжения на управляющий электрод УЭ. При подаче напряжения на электрод УЭдоп тиристор, напротив, можно перевести из включенного состояния в выключенное.

Особенности устройства полупроводникового неуправляемого тиристора

Структура динистора четырехслойная с тремя p-n-переходами. Эмиттерные переходы прямого направления – p-n1 и p-n3, переход p-n2 – коллекторный, обратной направленности, обладает высоким сопротивлением. Выводы:

  • анод – выводится из p-области;
  • катод – выводится из n-области.

Отличие динистора от диода – количество p-n-переходов (у диода один p-n-переход), от обычного тиристора – отсутствие третьего, управляющего, входа.

Основные плюсы trigger diode:

  • обеспечение несущественной потери мощности;
  • возможность эксплуатации в широком температурном интервале – -40…+125°C;
  • возможность получения высокого выходного напряжения.

Минус – отсутствие возможности управлять работой этого устройства.

Схема проверки динистора

Для реальной проверки на работоспособность нужно собрать схему проверки динисторов. Она включает в себя совсем немного компонентов:

  • блок питания с возможностью регулировки напряжения в пределах 30-40 В.
  • резистор 10 кОм.
  • светодиод.
  • подопытный образец — симметричный динистор DB3.

Очень редко в радиолюбителей есть блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.

Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.

Как видим, светодиод начинает тускло загораться при подаче на схему напряжения 35,4 В. С учетом, что 2,4 В уходит на светодиод, напряжение пробоя у подопытного динистора DB3 составляет порядка 33 В. Из паспортных данных значение напряжение пробоя динистора DB3 может колебаться в пределах от 28 до 36 В.

Как видим, проверка динистора DB3 занимает всего лишь несколько минут. Если необходимо проверить несимметричный динистор, необходимо четко соблюдать полярность его включения в этой схеме.

корпус: DO-35; 0,1A 40V россыпь

Количество (шт.): 1 шт. 100 шт. 500 шт.
Цена (грн.): 2 грн. 0.78 3 грн. 0.67 86 грн.

Читать также: Техническое присоединение к электрическим сетям физических лиц

Ток 0.1 А
Напряжение 40 В
Корпус DO-35

Характеристики тиристоров и динисторов и область их применения

Группа четырехслойных полупроводниковых элементов включает такие элементы, как тиристоры и динисторы. В каждом из этих устройств имеются три последовательных электронно-дырочных перехода. Тиристор, цена которого незначительно варьируется в зависимости от характеристик, обладает двумя устойчивыми положениями равновесия: открытым (при наличии прямого направления) и закрытым – в обратном положении.

Для чего нужен тиристор?

Тиристор активно применяется для регулировки коммутации токов большого номинала. Это осуществляется при подаче на элемент управляющего сигнала. Данная характеристика делает устройство подобным транзистору.

Подключение тиристора в цепь переменного тока осуществляет следующие действия:

* включение и выключение электрической цепи при наличии активной и активно-реактивной нагрузки;

* за счет возможности регулировки момента подачи сигнала управления, тиристоры силовые используются для изменения среднего и действующего значения тока посредством нагрузки.

В отличие от слабых в плане характеристик транзисторов, мощный тиристор может коммутировать цепи, напряжение которых может достигать до 5кВ, с силой тока до 5кА, при этом частота может достигать до 1кГц.

Общие характеристики динисторов

Достаточно большая группа диодных тиристоров делится на два типа:

1. Диодный тиристор (динистор) является неуправляемым элементом и имеет только пару выходов – анод (которым является крайняя р-область), и, соответственно – катод (крайняя n-область). При подаче на анод напряжения «минус», а на катод – «плюс», в устройстве проходит обратный ток небольшой мощности. В радиоэлектронике динистор, фото которого легко найти в интернете, встречаются, например, на печатных платах энергосберегающих ламп, которые устанавливаются в цоколе обычной лампы.

2. Диодный тиристор также может иметь название тринистор, и отличаться от динистора своей конструкцией. В данном типе полупроводниковых элементов используется третий вывод, который расположен от одной из средних областей. Этот выход дает возможность открывать прибор в состоянии активной работы.

Режимы работы тиристора

Режим обратного запирания

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель

Для объяснения характеристик прибора в режиме прямого запирания используем двухтранзисторную модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера IE, коллектора IC и базы IB и статическим коэффициентом усиления по току α1 p-n-p транзистора также приведена на рис. 4, где IСо— обратный ток насыщения перехода коллектор-база.

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток Ig втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.

Ток базы p-n-p транзистора равен IB1 = (1 — α1)IAICo1. Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α2 равен IC2 = α2IK + ICo2.

Приравняв IB1 и IC2, получим (1 — α1)IAICo1 = α2IK + ICo2. Так как IK = IA + Ig, то

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α1 + α2 Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p + -i-n + )-диоду…

Для схемы «Автоматическое включение габаритных огней в автомобиле»

Согласно Правилам дорожного движения, с наступлением сумерек шофер должен включать габаритные огни автомобиля. Вроде бы, просто, но к чему отвлекаться во час движения, если эту работу можно поручить автоматике. Предлагаемая схема отслеживает уровень освещенности и при достижении заданного порога включает «габариты».Датчиками освещенности служат фоторезисторы RF1 и RF2 (два, соединенные параллельно для улучшения чувствительности), включенные в базу транзисторного ключа VT1. Чувствительность узла регулируется переменным резистором R5. При увеличении его сопротивления чувствительность уменьшается. Когда внешняя освещенность достаточна (на улице светло), сопротивление фоторезистора мало (несколько килоом), и транзистор VT1 закрыт, микросхема DD1 обесточена.При наступлении темноты сопротивление RF1 увеличивается, и в определенный момент транзистор VT1 открывается. На микросхему DD1 поступает питание, запускается генератор импульсов на элементе DD1.1 (DD1.2 — буфер), управляющий транзисторным ключом VT2. регулятор мощности на симисторе тс122-25 Ключ коммутирует лампы «габаритов» (на схеме показана одна — HL1)

За счет изменения скважности импульсов генератора регулируется яркость свечения ламп. Скважность импульсов устанавливается переменным резистором R1 (желательно применить СПОИ) и изменяется так, что подводимая к нагрузке мощность варьируется в пределах от 5 до 95%.В устройстве применена микросхема К1564ТЛ2, каждый компонент которой представляет собой инвертор с триггером Шмитта на входе

Микросхема содержит четыре однотипных элемента. Передаточная характеристика триггера Шмитта имеет два отличающихся порога (срабатывания и отпускания), т.е. обладает гистерезисом. Напряжение гистерезиса Ur для данной микросхемы пропорционально напряжению питания. Так, при Un=12 В, Ur=2,4 В. Колебания напряжений, входящие в тот самый предел, триггер Шмитта игнорирует… Смотреть описание схемы