Схема инвертора напряжения на тринисторах ку201 (12в

Содержание

Аналоги КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог
, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

  • ВТ138;
  • ВТ151.

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе
из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм, так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Сборка инверторного блока

Чтобы сделать сварочный инвертор своими руками необходимо перейти к следующему этапу – монтажу инверторного блока. Так, как этот узел преобразовывает ток из постоянного в переменный, нужны мощные транзисторы, которые будут то открываться, то закрываться, создавая высокую частоту.

В инструкцию для изготовления простого инвертора можно включить схему инверторного блока.

  • Блендер погружной — какой фирмы лучше выбрать для дома. Фото+ видео отзывы

  • Тестер своими руками: инструкция, схемы и решения как сделать простой самодельный прибор. Пошаговая инструкция как сделать тестер из смартфона

  • Регулятор напряжения своими руками: мастер-класс как сделать простейшее устройство по регулировке напряжения

Есть смысл этот блок монтировать с применением нескольких транзисторов, чтобы частота была более стабильной и при выполнении сварки аппарат меньше гудел.

Как проверить тиристор от отдельного источника управляющего напряжения?

Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.

Смотрим рисунок №3.

В этой схеме ток управляющего электрода подается от отдельного источника. В качестве него можно использовать плоскую батарейку. При кратковременном нажатии на кнопку Кн2, лампочка так же загорится, как и в случае на рисунке №1. Ток управляющего электрода должен быть не менее 15 – 20 миллиампер. Запирается тиристор, так же, нажатием кнопки Кн1. Так проверяются«не запираемые» тиристоры (КУ201, КУ202, КУ208 и др.). Запираемый тиристор, например КУ204, отпирается положительным полюсом на управляющем электроде и минусом на катоде. Запирается, отрицательным напряжением на управляющем электроде и положительном на катоде. Менять полюсовку управляющего напряжения можно с помощью переключателя П

Нужно обратить внимание на то, что «запирающий ток» тиристора, почти в два раза больше отпирающего. Если вдруг тиристор КУ204 не будет запираться, нужно уменьшить величину сопротивления резистора R до 50 Ом

style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″ data-ad-slot=»8788166382″> Share

Аналоги КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

  • ВТ138;
  • ВТ151.

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Характеристики

Постоянное отпирающее напряжение и отпирающий ток управляющего электрода

Отпирающее напряжение КУ201 (2У201) не более 6 В, КУ202 (2У202) не более 7 В. У этого параметра довольно большой технологический разброс. Как показывает опыт, обычно это напряжение в разы меньше, может быть 2 В или даже 1 В. При проектировании схем рассчитывать на какое-то определенное значение этого параметра не стоит.

Отпирающий ток КУ201 (2У201) не более 100 мА, КУ202 (2У202) не более 200 мА.

Напряжение в открытом состоянии при максимально допустимом токе

КУ201 (2У201) — 2.5 В, КУ202 (2У202) — 2 В. Этот параметр очень важен, так как позволяет оценить рассеиваемую мощность при заданном токе нагрузки в схемах коммутации, где переключения происходят достаточно редко и при небольшом токе (без учета потерь в переходных процессах).

[Рассеиваемая мощность, Вт] Напряжение в открытом состоянии, В] * [Действующее значение силы тока нагрузки, А]

Время включения и выключения

КУ201 (2У201) — включение 10 мкс, выключение 100 мкс, КУ202 (2У202) — включение 10 мкс, выключение 150 мкс.

Время включения не является критическим параметром. Время выключения влияет на то, на какой максимальной частоте тиристор может работать. Для стабильного запирания тиристора считается необходимым, чтобы время выключения (запирания) составляло 1% — 1.5% от длительности полупериода (для синусоидального сигнала или другого с плавными фронтами). Так что эти тиристоры можно применять только в сети 50 — 60 Гц.

Мы пробовали использовать их для коммутации силовых нагрузок при 400 Гц, и поняли, что делать этого не стоит. Во-первых, без специальных демпфирующих цепей, запираются они ненадежно. Во-вторых, высоки коммутационные потери и, соответственно, нагрев. В-третьих, применение демпфирующих цепей еще больше увеличивает потери.

Максимальная сила тока и мощность

Постоянный ток в открытом состоянии КУ201 (2У201) — 2 А, КУ202 (2У202) — 10 А.

Импульсный (

Импульсный (

Средняя рассеиваемая мощность (при условии надежного отвода тепла) КУ201 (2У201) — 4 Вт, КУ202 (2У202) — 20 Вт.

Рабочее напряжение

Описываемые тиристоры относятся к классу обратно-непроводящих. Однако, для некоторых буквенных индексов обратное напряжение не нормируется, то есть производитель не гарантирует их устойчивую работу при приложении обратного напряжения. Мы приведем прямое напряжение в закрытом состоянии для всех буквенных индексов и обратное только для тех, для которых оно приводится производителями. Если обратное напряжение не приведено, то оно не нормируется, и подавать напряжение обратной полярности на прибор не стоит.

Для прямого напряжения приводится минимальное значение, то есть производитель гарантирует, что при таком напряжении тиристор не откроется, но он не гарантирует, что при несколько большем напряжении он обязательно откроется. Экспериментируя с тринисторами 2У201Л, 2У202К, мы находили образцы, которые не открывались даже при 1300 В. Так что, проектируя схемы, не следует рассчитывать на то, что тиристор обязательно откроется при нужном Вам напряжении без подачи тока на управляющий электрод.

Тиристоры КУ201Л, 2У201Л, КУ201К, 2У201К, КУ202Л, 2У202Л, КУ202К, 2У202К хоть по справочнику и имеют максимальное напряжение 300 В, но отлично работают в схемах коммутации сетевого напряжения, где амплитудное значение напряжения может достигать 330 В.

Постоянное прямое напряжение в закрытом состоянии не менее: КУ201А (2У201А), КУ201Б (2У201Б), КУ202А, КУ202Б — 25 В, КУ201В (2У201В), КУ201Г (2У201Г), КУ202В, КУ202Г — 50 В, КУ201Д (2У201Д), КУ201Е (2У201Е), КУ202Д (2У202Д), КУ202Е (2У202Е)- 100 В, КУ201Ж (2У201Ж), КУ201И (2У201И), КУ202Ж (2У202Ж), КУ202И (2У202И)- 200 В, КУ201К (2У201К), КУ201Л (2У201Л), КУ202К (2У202К), КУ202Л (2У202Л)- 300 В, КУ202М (2У202М), КУ202Н (2У202Н)- 400 В.

Постоянное обратное напряжение: КУ201Б (2У201Б) — 25 В, КУ201Г (2У201Г) — 50 В, КУ201Е (2У201Е), КУ202Е (2У202Е)- 100 В, КУ201И (2У201И), КУ202И (2У202И)- 200 В, КУ201Л (2У201Л), КУ202Л (2У202Л)- 300 В, КУ202Н (2У202Н)- 400 В.

Для схемы «Применение интегрального таймера для автоматического контроля напряж»

ЭлектропитаниеПрименение интегрального таймера для автоматического контроля напряжения при зарядке аккумуляторовМакгоуэнФирма Stoelting Co. (Чикаго, шт. Иллинойс)На основе интегрального таймера типа 555 можно собрать автоматическое зарядное устройство для аккумуляторных батарей. Назначением такого зарядного устройства является поддержание в полностью заряженном состоянии резервной аккумуляторной батареи для питания какого-либо измерительного устройства. Такая батарея постоянно остается подключенной к сети переменного тока независимо от того, используется она в в данный момент для питания устройства или нет. В автоматическом зарядном устройстве из состава схемы интегрального таймера используются оба компаратора, логический триггер и мощный выходной усилитель.Опорный стабилитрон D1 при посредстве внутреннего резистивного делителя, имеющегося в ИС таймера, подает опорные напряжения на оба компаратора. схемы з.у.для коногонки.Без трансформатора но с регулятором тока и -5в. Напряжение на выходе таймера (вывод 3) переключается между уровнями 0 и 10 В.При калибровке схемы вместо батареи никель-кадмиевых аккумуляторов включают регулируемый источник напряжения постоянного тока. Потенциометр «Выключение» устанавливают на требуемое конечное напряжение зарядки батареи (обычно 1,4 В на элемент), в потенциометр «Включение» — на требуемое начальное напряжение зарядки (обычно 1,3 В на элемент).Резистор R1 сдерживает рабочий ток схемы на уровне менее 200 мА при любых условиях. Диод D2 предотвращает разряд батареи через таймер, когда последний пребывает в состоянии «выключено». Конденсатор служит для блокировки колебаний во час перехода … Смотреть описание схемы … Copyright 2010-2015, www.electroschema.com «Схема Блог. Радиоэлектроника. Электрические схемы

» Все права защищены, при перепечатке активная ссылка на эту статью Простейшие схемы на ку202н обязательна.

Загрузка. Пожалуйста, подождите…

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.

Простейший регулятор

Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R1 – сопротивление с номиналом 15кОм;
  • R2 – резистор переменного типа 30кОм;
  • С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • Rn – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.

Влияние сопротивления R2 на работу регулятора

Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:

  • подавать напряжение через сглаживающий фильтр (его схему несложно найти), самый простой вариант реализации – ферритовое кольцо с обмотанным вокруг него сетевым кабелем;

    Фильтр на основе ферритового кольца от кабеля монитора

  • собрать устройство, не создающее помехи, приведем пример такой схемы.

Технические данные и стоимость

Характеристики частотников на тиристорах зависят от вида, опций.

ТПЧ

Значения ТПЧ 320 800
Мощность, кВт 320 800
Наибольшая мощность, кВ-А 640 1250
Частота, герц 50 50
Входное напряжение, В 380 500
Величина наибольшего постоянного тока, А 630 1000
КПД, % 94 94
Выходное напряжение, В 800 1000

Преобразователь на тиристорах, работающий в условиях с влажностью и запыленностью (ЭПУ-1-1-3447Е УХЛ4).

Ток, А 25
Наибольший ток нагрузки, А 100
Входное напряжение, В 380

Тиристорные преобразователи объединяют в комплексы по выпрямлению. У одного уравнителя при неисправности ремонтируют полностью все оборудование или демонтируют. У выпрямительного комплекса заменяют только тот механизм, который вышел из строя. Эти системы применяются в станках. Стоимость оборудования тиристорного преобразователя АВВ DCS400 на 2020 г составляет в районе ста рублей.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

https://youtube.com/watch?v=Xup8XSiJ1yY

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.


Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Характеристики самодельного инвертора

Один из важных вопросов для специалистов по сварке – как сделать сварочный инвертор своими руками. Процесс можно выполнить при помощи схемотехники сварочных инверторов. Прежде чем собирать эффективный сварочный инвертор необходимо выделить следующие технические характеристики оборудования:

  • на одном из транзисторов сила тока, который проходит через вход, должна составлять 32 ампера;
  • 250 ампер – показатель силы тока, который создается при выходе из аппарата;
  • напряжение должно быть до 220 вольт.

Для того чтобы создать самый простой сварочный инвертор необходимо соединить следующие элементы в один механизм:

  • силовой блок;
  • питательный блок на тиристорах;
  • драйвера для силовых ключей.

Тип

КУ201 (2У201), КУ202 (2У202) с разными буквенными индексами — тиристоры незапираемые, обратно-непроводящие, управляемые по катоду (управляющее напряжение прилагается между управляющим электродом и катодом)

Вашему вниманию подборка материалов:

При отрицательном напряжении на аноде на управляющий электрод нельзя подавать положительное напряжение, но можно подавать отрицательное напряжение, что позволяет использовать эти тиристоры (те, для которых нормировано обратное напряжение) включенными встречно-параллельно для имитации симистора.

Производитель рекомендует включать между катодом и управляющим электродом резистор 51 Ом. Мы на своем опыте убедились, что при подвешенном управляющем электроде (отключенном от каких-либо цепей) эти тиристоры работают нестабильно. Происходят самопроизвольные открывания. В типичных схемах управления, когда нужно, чтобы тиристор был закрыт, на его управляющий электрод просто не подают отпирающее напряжение, но не обеспечивают замыкание между управляющим электродом и катодом. В таких схемах шунтирующий резистор необходим. Производители распространенных оптопар, предназначенных для управления тиристорами (например, MOC3061, MOC3062, MOC3063), рекомендуют применять свои оптроны с большими номиналами шунтирующего резистора. Однако, наши эксперименты показали, что эти оптопары прекрасно работают с шунтирующими резисторами от 150 Ом, а рассматриваемые тринисторы устойчиво запираются при сопротивлении резистора между катодом и управляющим электродом вплоть до 500 Ом при условии, что температура корпуса тиристора не превышает 50 градусов Цельсия. Получается интервал значений, допустимых и для оптрона, и для тиристора, от 150 Ом до 500 Ом. Так что можно подобрать нужные номиналы, при которых будет нормально работать и оптрон и тиристор. Исходить нужно их температуры, при которой будет работать тиристор. Если он будет сильно нагружен или плохо охлаждаться, то лучше выбрать резистор поменьше (150 — 250 Ом). При этом оптрон будет повышенная, но вполне допустимая, нагрузка на оптрон. Если нагрузка небольшая, то лучше использовать резистор 400 — 500 Ом.

Для схемы «Электроэффлювиальная люстра»

Электроэффлювиальная люстра, ионизатор, — это излучатель отрицательных аэроионов, который сможет увеличить насыщенность воздуха домашнего помещения аэроионами.Конструкция состоит из квадратного основания, изготовленного из проволоки 2 мм, и сетки из провода 1 мм, в узлах которой впаяны заостренные иголки из провода диаметром 0,3 мм. От углов к центру квадрата идут четыре проводника, спаянные совместно. К этой точке подводится высокое напряжение, и через изолятор люстра подвешивается к потолку. Тиристорный высоковольтный преобразователь состоит из понижающего силового трансформатора Т1 , выпрямителя на VD1, накопительного конденсатора С1, высоковольтного трансформатора Т2 и управляющего узла тиристора — III обмотка T1, R2, VD2.Детали. Вместо тиристора КУ201Л можно применить КУ202Н. Недопустимо использование симисторов (к примеру, КУ208). Трансформатор Т1 любой малогабаритный от ламповой радиолы (намотать самостоятельно на сердечнике Ш19, толщина набора 30 мм: I обмотка — 2120 витков провода ПЭЛ-0,2; II обмотка — 2120 витков ПЭЛ-0,2; III обмотка — 66 витков ПЭЛ-0,2). регулятор сетевого напряжения на 561ла7 Т2 — высоковольтная катушка от блока электронного зажигания бензопилы Трал» или магнето. Можно изготовить из сердечника и высоковольтной катушки от телевизора типа УНТ-35 («Рекорд-66», «Рассвет»). Первичную обмотку намотать самому проводом ПЭЛ-0,51 в количестве 200 витков. Вместо высоковольтного столбика ВТ-18/0,2 можно применить 5ГЕ600АФ. Изоляцию высоковольтного провода исполнять только полихлорвиниловой лентой. Перед первым включением преобразователя в разрыве в точке А надобно подключить лампу на 220 В. Если после включения лампочка загорелась, поменяйте местами выводы III обмотки Т1. Если после этого появилось высокое напряжение, но лампа хотя бы слегка продолжает светиться, увеличьте сопротивление резистора R2. При работе аэроионизатора не должно быть никаких запахов — это признак появления вредн… Смотреть описание схемы …

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А

Для схемы «3 схемы простых радио-микрофонов»

Радиошпион3 схемы радио-микрофоновМодель с универсальным питанием 3-12v.Рассматривается как наиболее массовая, простая, качественная и удобная для серийного производства. Схема изображена на рисунке 1.Рис.1В скобках указаны разбросы элементов

Без скобок оптимальное важность.Микрофон МКЭ 332/333А-Б, транзистор Т1-КТ6111В, КТ3102А-Б, можно КТ315А-Б, но у них больше разброс тока генерации.Из импортных- 2SC945. Катушка L1 имеет 6 витков проводаПЭВО,45-0,7, (диаметр 4мм) намотка впритирку

Частота собранной схемы 82-90 Мгц. На 92-97 Мгц схему настраивают разжимом витков L1. все резисторы МЛТ-0,125;0,25. Конденсаторы (кроме С3) керамические дисковые импортные. С3- керамический 0,22-0,47 Мкф. Или мини электролит 0,47-4,7 Мкф. Порядок наладки следующий: проверить ток потребления (8-10 мА) от 9V «Крона». трансивер радио-76м3 Антенна припаивается к 1,2-1,4 витка от «холодного» конца катушки L1. Длина антенны 1000-1070 мм. (я брал 500, нормально), выполнена из многожильного провода диаметром 0,8-1,4 мм. С изоляцией. Дальность в городе 120-160 м, если показания меньше, то нужно увеличить связь антенны с контуром путём сдвига точки припайки А2 до 1,5-1,6 витка.Срок службы с «Кроной» импортной =2-3 суток, с СЦ-012= 1 сутки. Передатчик с питанием от телефонной линии рис2. является вариантом базовой схемы.Рис.2L1=6 витков провода ПЭВ 0,3-0,4 на оправке 2,6-3,0 мм виток к витку. ТЛФ передатчик должен иметь так потребления 10-12 мА в линияхс блокиратором и в линиях без блокиратора 16-18 мА в линиях с блокиратором. Для получения этого тока нужно транзисторы, отобранные под ток 7,0-8,5 мА. Наладка сводится к измерению т… Смотреть описание схемы …

Типичная схема использования

В большинстве случаев схема применения тиристорного регулятора остаётся прежней, мало меняющейся с годами:

  1. Программные установки (ПУ) в виде кода закладываются в память арифметического устройства (АУ) электронного блока. В стиральной машине это самая дорогая часть. Настолько, что замена часто нецелесообразна.
  2. Тиристорный регулятор служит вводным устройством (ВУ), куда поступает управляющий сигнал.
  3. Изменённое напряжение воздействует на сервисный привод (СП), обмотки двигателя, коллектор и пр. Линия обратной связи показывает, что малая нестабильность компенсируется непосредственно без участия центрального процессора. Выше уже говорилось про величину искрения.
  4. Механизм (М) отрабатывает команды. На валу стоит централизованный датчик положения (ЦДП), по которому процессор понимает, что происходит в результате подачи команд. При необходимости алгоритм корректируется.