Микросхема uc3846n как работает

Содержание

Состав.

В его составе имеется:
   — источник опорного напряжения на 5В с внешним выводом 8;
   — схема защиты от снижения напряжения питания (UVLO).
   — генератор пилообразного напряжения (генератор);
   — компаратор тока, используется в основном по сигналу ограничения тока;
   — усилитель ошибки, используется в основном по напряжению;
   — схема управления работой выходного каскада;

Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;

 НАПРЯЖЕНИЕ 
ВКЛЮЧЕНИЯ — 16 В, 
 ВЫКЛЮЧЕНИЯ — 10 В 
 НАПРЯЖЕНИЕ 
 ВКЛЮЧЕНИЯ — 8.4 В, 
 ВЫКЛЮЧЕНИЯ — 7.6 В 
ДИАПАЗОН
РАБОЧИХ
ТЕМПЕРАТУР
 КОЭФФИЦИЕНТ 
ЗАПОЛНЕНИЯ
РАБОЧИЙ ЦИКЛ
 
UC1842 UC1843 -55°С… +125°С до 100%
UC2842 UC2843 -40°С… +85°С
UC3842 UC3843 0°С… +70°С
 
UC1844 UC1845 -55°С… +125°С до 50%
UC2844 UC2845 -40°С… +85°С
UC3844 UC3845 0°С… +70°С
 

Ещё микросхемы с суффиксом «А», например UC3842A, имеют в два раза меньший ток запуска — 0,5 мА. Микросхемы без суффикса «А» имеют пусковой ток около 1,0 мА.
Да, ещё совсем забыл про корпуса микросхем. Мы здесь рассматриваем в основном микросхемы в восьми-выводном корпусе DIP-8 (может быть суффикс «N», так же может быть керамический CERDIP-8 корпус (суффикс «J»), или SOIC-8 корпус (суффикс «D8»). Цоколёвки восьми-выводных микросхем полностью совпадают.
Так же микросхемы могут выпускаться и в 14-ти выводном «SOIC-14» корпусе, с суффиксом «D», и могут быть и в корпусе «PLCC-20» (суффикс «Q»). Цоколёвки микросхем в этих корпусах отличаются.
Отечественные микросхемы серии 1114, выполнены в корпусе Н02.8-2В. Это десяти-выводной металлокерамический корпус (ниже на рисунке) по пять выводов с каждой стороны, средние выводы из которых, являются просто технологической перемычкой и не учитываются. То есть получаются те же восемь выводов.

Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
— это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе «SOIC-14».

Импульсные БП на микросхеме

Для наглядности нужно рассмотреть описание работы источника питания на UC3842. Впервые она начала применяться в бытовой технике во второй половине 90-х годов. У нее явное преимущество перед всеми конкурентами – малая стоимость. Причем надежность и эффективность не уступают. Для построения полноценной схемы стабилизатора напряжения практически не требуются дополнительные компоненты. Все делается «внутренними» элементами микросхемы.

Элемент может быть выполнен в одном из двух типов корпуса – SOIC-14 или SOIC-8. Но нередко можно встретить модификации, выполненные в корпусах DIP-8. Нужно заметить, что последние цифры (8 и 14) означают количество выводов микросхемы. Правда, различий не очень много – в случае если элемент с 14-ю выводами, просто добавляются выводы для подключения массы, питания и выходного каскада. На микросхеме строятся стабилизированные источники питания импульсного типа с ШИМ-модуляцией. Обязательно для усиления сигнала используется МОП-транзистор.

uc3842 — описание, принцип работы, схема включения

uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.

Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:

  • на первый подается напряжение;
  • второй нужен для создания обратной связи;
  • в случае подачи на третий вывод напряжения более 1В, на выходе МС не будет никаких импульсов;
  • четвертый — место подключение переменного резистора;
  • пятый — общий;
  • шестой служит для снятия ШИМ-импульсов;
  • седьмой необходим для подключения питания от 16 до 34В, в нем срабатывает защита от перенапряжения;
  • восьмой подключается специальное устройство, которое стабилизирует частоту импульсов.

Типовая схема включения микрочипа uc3842 представлена на рисунке 2.

Рисунок 2. Типовая схема включения uc3842

Причины и области применения ШИМ

Принцип широтно-импульсной модуляции используется в регуляторах частоты вращения мощных асинхронных двигателей. В этом случае модулирующий сигнал регулируемой частоты (однофазный или трехфазный) формируется маломощным генератором синусоиды и накладывается на несущую аналоговым способом. На выходе получается ШИМ-сигнал, который подается на ключи потребной мощности. Дальше можно пропустить получившуюся последовательность импульсов через фильтр низкой частоты, например через простую RC-цепочку, и выделить исходную синусоиду. Или можно обойтись без нее – фильтрация произойдет естественным образом за счёт инерции двигателя. Очевидно, что чем выше частота несущей, тем больше форма выходного сигнала близка к исходной синусоиде.

Возникает естественный вопрос – а почему нельзя усилить сигнал генератора сразу, например, применением мощных транзисторов? Потому что регулирующий элемент, работающий в линейном режиме, будет перераспределять мощность между нагрузкой и ключом. При этом на ключевом элементе впустую рассеивается значительная мощность. Если же мощный регулирующий элемент работает в ключевом режиме (тринистор, симистор, RGBT-транзистор), то мощность распределяется во времени. Потери будут намного ниже, а КПД – намного выше.

В цифровой технике особой альтернативы широтно-импульсному регулированию нет. Амплитуда сигнала там постоянна, менять напряжение и ток можно лишь промодулировав несущую по ширине импульса и впоследствии усреднив её. Поэтому ШИМ применяют для регулирования напряжения и тока на тех объектах, которые могут усреднять импульсный сигнал. Усреднение происходит разными способами:

  1. За счет инерции нагрузки. Так, тепловая инерция термоэлектронагревателей и ламп накаливания позволяет объектам регулирования заметно не остывать в паузах между импульсами.
  2. За счёт инерции восприятия. Светодиод успевает погаснуть от импульса к импульсу, но человеческий глаз этого не замечает и воспринимает как постоянное свечение с различной интенсивностью. На этом принципе построено управление яркостью точек LED-мониторов. Но незаметное мигание с частотой несколько сот герц все же присутствует и служит причиной усталости глаз.
  3. За счет механической инерции. Это свойство используется при управлении коллекторными двигателями постоянного тока. При правильно выбранной частоте регулирования двигатель не успевает затормозиться в бестоковых паузах.

Поэтому ШИМ применяют там, где решающую роль играет среднее значение напряжения или тока. Кроме упомянутых распространенных случаев, методом PWM регулируют средний ток в сварочных аппаратах и зарядных устройствах для аккумуляторных батарей и т.д.

Если естественное усреднение невозможно, во многих случаях эту роль на себя может взять уже упомянутый фильтр низкой частоты (ФНЧ) в виде RC-цепочки. Для практических целей этого достаточно, но надо понимать, что без искажений выделить исходный сигнал из ШИМ с помощью ФНЧ невозможно. Ведь спектр PWM содержит бесконечно большое количество гармоник, которые неизбежно попадут в полосу пропускания фильтра. Поэтому не стоит строить иллюзий по поводу формы восстановленной синусоиды.

Очень эффективно и эффектно управление методом ШИМ RGB-светодиодом. Этот прибор имеет три p-n перехода – красный, синий, зеленый. Изменяя раздельно яркость свечения каждого канала, можно получить практически любой цвет свечения LED (за исключением чистого белого). Возможности по созданию световых эффектов с помощью PWM безграничны.

Наиболее употребительная сфера применения цифрового сигнала, промодулированного по длительности импульса – регулирование среднего тока или напряжения, протекающего через нагрузку. Но возможно и нестандартное использование этого вида модуляции. Все зависит от фантазии разработчика.

Что такое импульсный блок питания и где применяется

Что такое аттенюатор, принцип его работы и где применяется

Что такое частотный преобразователь, основные виды и какой принцип работы

Преобразователи напряжения с 12 на 220 вольт

Что такое диодный мост, принцип его работы и схема подключения

Что такое триггер, для чего он нужен, их классификация и принцип работы

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

Рисунок 6. Схема включения микрочипа uc3844

Как работает микросхема

А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.

Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.

sg3525 — описание, принцип работы, схема включения

Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .

Схема подключения видна на рисунке 5.

Рисунок 5. Схема подключения ШИМ sg3525

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

Рисунок 1. Схема включения uc3843

sg3525 — описание, принцип работы, схема включения

Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .

Схема подключения видна на рисунке 5.

Рисунок 5. Схема подключения ШИМ sg3525

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

Рисунок 1. Схема включения uc3843

Назначения элементов и работа схемы

Начнем с конденсатора С1, резисторов R5 и R6 – это элементы, от величин которых зависит рабочая частота контроллера, которую можно регулировать естественно с помощь триммера R5. C3 – от величины этого конденсатора зависит время плавного запуска схемы. От величины резистора R4 зависит длительность интервала «мертвого» времени. Выводы 1 и 2 микросхемы DA1, это входы усилителя ошибки. Так как данный модуль управления предназначен для работы в составе довольно таки мощного преобразователя, по всей вероятности на данном усилителе собрана схема мягкого запуска. Т.е. при включении схемы, в первый момент времени длительность выходных импульсов управления мощными ключами минимальная. По мере заряда конденсатора С2 их длительность увеличивается до нужной величины. Конденсаторы С5 и С6, по всей видимости фильтрующие. На биполярных транзисторах VT2… VT5 собраны дополнительные ключи для управления затворами мощных КМОП транзисторов.

На микросхеме DA4 собрана схема защиты мощных транзисторов от превышения допустимого тока. Схема питается от отдельного микросхемного стабилизатора напряжения DA3

Обратите внимание, что общий провод схемы защиты соединен с «землей» через контакт 8 разъема и датчик тока – шунт. С контакта 8 разъема едет провод на истоки мощных транзисторов

Таким образом, сигнал с шунта через резистор R23 подается на инвертирующий вход операционного усилителя DA4.2. А нижний конец шунта через «земляной» провод через резистор R22 подается на не инвертирующий вход данного ОУ. Коэффициент усиления напряжения шунта регулируют при помощи резистора обратной связи R21 и в общем случае он равен отношению R21/R23. С помощью этого резистора регулируют и уровень тока отсечки схемы защиты. На DA4.1 собран компаратор напряжений. Опорное напряжение с резистивного делителя R18,R19 подается на инвертирующий вход ОУ, вывод 6 DA4.1. На не инвертирующий вход подается усиленное напряжение с датчика тока – шунта. Диод VD2 в схеме компаратора устраняет эффект дребезга выходного напряжения, когда синфазные сигналы на его входе находятся в зоне равенства. В нормальном режиме работы преобразователя усиленное напряжение сигнала с шунта должно быть всегда меньше опорного напряжения на выводе 6 мс DA4.1. Увеличение тока через КМОП транзисторы повлечет за собой увеличение напряжения на выводе 5 мс DA4.1 и как только оно превысит опорное напряжение, компаратор включится и на его выходе появится напряжение примерно равное напряжению его питания, т.е. +5В. Это напряжение через разделительный диод VD1 поступит на вход SHUTDOWN (выключение) — вывод 10 мс DA1.

Особенности работы микросхемы (adsbygoogle = window.adsbygoogle || []).push({});

Если имеется короткое замыкание в цепи вторичной обмотки, то при пробое диодов или конденсаторов начинает возрастать потеря электроэнергии в импульсном трансформаторе. Может получиться и так, что для нормального функционирования микросхемы не хватает напряжения. При работе слышно характерное «цыканье», которое исходит от импульсного трансформатора.

Рассматривая описание, принцип работы и схему включения UC3842, сложно обойти стороной особенности ремонта. Вполне возможно, что причиной поведения трансформатора является не пробой в его обмотке, а неисправность конденсатора. Происходит это в результате выхода из строя одного или нескольких диодов, которые включаются в цепь питания. Но если произошел пробой полевого транзистора, необходимо полностью менять микросхему.

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

Рисунок 6. Схема включения микрочипа uc3844

uc3842 — описание, принцип работы, схема включения

uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.

Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:

  • на первый подается напряжение;
  • второй нужен для создания обратной связи;
  • в случае подачи на третий вывод напряжения более 1В, на выходе МС не будет никаких импульсов;
  • четвертый — место подключение переменного резистора;
  • пятый — общий;
  • шестой служит для снятия ШИМ-импульсов;
  • седьмой необходим для подключения питания от 16 до 34В, в нем срабатывает защита от перенапряжения;
  • восьмой подключается специальное устройство, которое стабилизирует частоту импульсов.

Типовая схема включения микрочипа uc3842 представлена на рисунке 2.

Рисунок 2. Типовая схема включения uc3842

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

Рисунок 1. Схема включения uc3843

Включение микросхемы

А теперь необходимо рассмотреть описание, принцип работы и схемы включения UC3842. На блоках питания обычно не указываются параметры микросхемы, поэтому нужно обращаться к специальной литературе – даташитам. Очень часто можно встретить схемы, которые рассчитаны на питание от сети переменного тока 110-120 В. Но благодаря всего нескольким доработкам можно увеличить напряжение питания до 220 В.

Для этого выполняются такие изменения в схеме блока питания на UC3842:

  1. Заменяется диодная сборка, которая находится на входе источника питания. Необходимо, чтобы новый диодный мост работал при обратном напряжении 400 В и больше.
  2. Заменяется электролитический конденсатор, который находится в цепи питания и служит фильтром. Устанавливается после диодного моста. Необходимо поставить аналогичный, но с рабочим напряжением 400 В и выше.
  3. Увеличивается номинальное сопротивление резисторов в цепи питания до 80 кОм.
  4. Проверить, может ли силовой транзистор работать при напряжении между стоком и истоком 600 В. Можно использовать транзисторы BUZ90.

В статье приведена схема блока питания на UC3842. Интегральная схема имеет ряд особенностей, которые обязательно нужно учитывать при проектировании и ремонте блоков питания.

Как работает микросхема (adsbygoogle = window.adsbygoogle || []).push({});

А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.

Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.

Проверка выходного сопротивления (adsbygoogle = window.adsbygoogle || []).push({});

Один из основных способов диагностики – замер величины сопротивления на выходе. Можно сказать, что это самый точный способ определения поломок

Обратите внимание на то, что в случае пробоя силового транзистора к выходному каскаду элемента будет приложен высоковольтный импульс. По этой причине происходит выход из строя микросхемы

На выходе сопротивление окажется бесконечно большим в случае, если элемент исправен.

Замер сопротивления производится между выводами 5 (масса) и 6 (выход). Измерительный прибор (омметр) подключается без особых требований – полярность значения не имеет. Рекомендуется перед началом проведения диагностики выпаять микросхему. При пробое сопротивление будет равно нескольким Ом. В том случае, если осуществлять измерение сопротивления без выпаивания микросхемы, то цепочка затвор-исток может звониться. И не стоит забывать о том, что в схеме блоков питания на UC3842 присутствует постоянный резистор, который включается между массой и выходом. При его наличии у элемента будет иметься выходное сопротивление. Следовательно, если на выходе сопротивление очень низкое или равно 0, то микросхема неисправна.

sg3525 — описание, принцип работы, схема включения

Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .

Схема подключения видна на рисунке 5.

Рисунок 5. Схема подключения ШИМ sg3525

SG3525 PDF

В общем, хоть эта микросхема и не нова, но ее структура позволяет реализовывать различные схемы преобразователей со многими дополнительными опциями. Такими как: стабилизация выходного напряжения, защита по току мощных ключевых транзисторов, защита от перенапряжения, отключение преобразователя при достижении минимального напряжения питания. Правда, диапазон регулировки ШИМ у нее только 50%.

Эта микросхема входит в модуль управления мощными полевыми транзисторами КМОП структуры в преобразователе напряжения, показанном на фото 1.

Ниже приведен машинный перевод параметров данного модуля. Это скриншот страницы с сайта aliexpress.com.

uc3842 — описание, принцип работы, схема включения

uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.

Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:

  • на первый подается напряжение;
  • второй нужен для создания обратной связи;
  • в случае подачи на третий вывод напряжения более 1В, на выходе МС не будет никаких импульсов;
  • четвертый — место подключение переменного резистора;
  • пятый — общий;
  • шестой служит для снятия ШИМ-импульсов;
  • седьмой необходим для подключения питания от 16 до 34В, в нем срабатывает защита от перенапряжения;
  • восьмой подключается специальное устройство, которое стабилизирует частоту импульсов.

Типовая схема включения микрочипа uc3842 представлена на рисунке 2.

Рисунок 2. Типовая схема включения uc3842

Проверка шубы по чипу через сайт честного знака

  1. Перейти на официальную страницу маркировки шуб на сайте честного знака.
  2. В самом конце страницы находим форму проверки кода маркировки. Вводим, указанный на чипе штрих-код шубы и нажимаем проверить.
  3. Если номер подлинный, то появится таблица с данными на изделие. В случае появления ошибки, можно сообщить о нарушении предпринимателем правил маркировки.

Какую информацию о шубе можно узнать?

Если выбранное Вами меховое изделие подлинно и промаркировано со всеми правилами, то при сканировании номера появится следующая информация:

  1. Статус КИЗ. Будет указано, продан проверяемый товар или же еще нет.
  2. Полное наименования изделия, которому принадлежит знак.
  3. Вид меха.
  4. Страна и производитель.
  5. Бренд и юридическое имя продавца.
  6. Дополнительные сведение в виде: цвета, размера, факта покраски, номера декларации соответствия, а также модели.

Таким образом происходит проверка мехового изделия перед покупкой. Надеемся, что с приходом обязательной системы маркировки, данный процесс будет работать и станет весомым аргументом при решении брать или не брать тот или иной товар.

Включение микросхемы

А теперь необходимо рассмотреть описание, принцип работы и схемы включения UC3842. На блоках питания обычно не указываются параметры микросхемы, поэтому нужно обращаться к специальной литературе – даташитам. Очень часто можно встретить схемы, которые рассчитаны на питание от сети переменного тока 110-120 В. Но благодаря всего нескольким доработкам можно увеличить напряжение питания до 220 В.

Для этого выполняются такие изменения в схеме блока питания на UC3842:

  1. Заменяется диодная сборка, которая находится на входе источника питания. Необходимо, чтобы новый диодный мост работал при обратном напряжении 400 В и больше.
  2. Заменяется электролитический конденсатор, который находится в цепи питания и служит фильтром. Устанавливается после диодного моста. Необходимо поставить аналогичный, но с рабочим напряжением 400 В и выше.
  3. Увеличивается номинальное сопротивление резисторов в цепи питания до 80 кОм.
  4. Проверить, может ли силовой транзистор работать при напряжении между стоком и истоком 600 В. Можно использовать транзисторы BUZ90.

В статье приведена схема блока питания на UC3842. Интегральная схема имеет ряд особенностей, которые обязательно нужно учитывать при проектировании и ремонте блоков питания.

Назначение выводов микросхемы (краткий обзор)

Для начала нужно рассмотреть назначение всех выводов микросхемы. Описание UC3842 выглядит таким образом:

На первый вывод микросхемы подается напряжение, необходимое для осуществления обратной связи. Например, если понизить на нем напряжение до 1 В или ниже, на выводе 6 начнет существенно уменьшаться время импульса.
Второй вывод тоже необходим для создания обратной связи. Однако, в отличие от первого, на него нужно подавать напряжение более 2,5 В, чтобы сократилась длительность импульса. Мощность при этом также снижается.
Если на третий вывод подать напряжение более 1 В, то импульсы прекратят появляться на выходе микросхемы.
К четвертому выводу подключается переменный резистор – с его помощью можно задать частоту импульсов. Между этим выводом и массой включается электролитический конденсатор.
Пятый вывод – общий.
С шестого вывода снимаются ШИМ-импульсы.
Седьмой вывод предназначен для подключения питания в диапазоне 16..34 В. Встроена защита от перенапряжения

Обратите внимание на то, что при напряжении ниже 16 В микросхема работать не будет.
Чтобы осуществить стабилизацию частоты импульсов, используется специальное устройство, которое подает на восьмой вывод +5 В.

Прежде чем рассматривать практические конструкции, нужно внимательно изучить описание, принцип работы и схемы включения UC3842.