Мощный двигатель на неодимовых магнитах своими руками

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Способы размагничивания магнита

Потеря свойства притягивания металлических предметов может произойти как естественным образом, так и при проведении ряда действий. При соблюдении правил эксплуатации и хранения, качества неодимовых элементов сохраняются на протяжении 100 и более лет, а ферритовые аналоги продолжают притягивать металл в течение 8-10 лет. Размагничивание неодимов естественным образом нецелесообразно, если требуется выполнить процедуру для нового предмета.

Нагрев изделия

Этот способ применяется как в промышленных, так и бытовых условиях: если магнит выполнен из стандартного сплава неодима с бором и железом, он утратит свойства при помещении в кипящую при 80 градусах по Цельсию воду или в случае контакта с нагретой до указанной температуры поверхностью. Если речь идет об изделии с повышенной стойкостью к термальным перепадам, выполнить процедуру в бытовых условиях вряд ли получится: температура размагничивания неодимовых магнитов с такими свойствами – 200 градусов по Цельсию. Для проведения процедуры в подобных случаях используется специальное промышленное оборудование.

Механические действия

Неодим может утратить свои качества в результате сильного направленного воздействия, например, удара: данный материал имеет порошковую структуру, которая разрушается при падении с высоты или при воздействии ударного оборудования. Кроме того, размагничивание может произойти случайно в процессе сверления или разрезания магнита: виной тому является чрезмерное механическое давление или повышение температуры изделия без принудительного охлаждения.

Обработка внешним магнитным воздействием

Наиболее часто, если есть возможность использовать промышленное оборудование повышенной мощности, используют другой магнит, который позволяет сформировать поле с силой индукции порядка 4 Тесла. Неодимовый магнит размагничивается в считанные секунды, поэтому такой способ, несмотря на технологическую сложность, отличается максимально быстрым достижением результата.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Рассмотрим каждый из примеров подробнее.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Почему мотоцикл на магнитном двигателе не попал в продажу

Мы назовем несколько причин, почему магнитный двигатель так и не поступил в серийную разработку:

  1. Даже после его презентации многие страны открестились от него, некоторые даже не пытались показать его.
  2. Если появится такой двигатель, то нефть станет ненужной. Соответственно никто этого не допустит.
  3. Наступит крах многих автомобильных империй.

Поэтому вы не сможете в сети ничего найти. Да и японцы почему-то быстро забыли о своей разработке. Но, это и понятно, ведь они зависимы от других стран.

В заключение мы хотим сказать, что такой двигатель имеет право на существование, но его нельзя купить, найти инструкцию по сборке и многое другое. Это никому не выгодно, и пока будет нефть, такие разработки будут скрывать. Также они никогда не поступят в серийные продажи, и вы это должны понимать.

Также читайте: как сделать проектор для мобильного своими руками.

Бестопливный генератор Адамса: просто о сложном

Принцип, положенный в основу действия вечного двигателя Адамса, основан на получении индукционного тока из свободной энергии без необходимости использования топливных ресурсов. Пройдя через цепь усовершенствований, такие устройства сегодня находят практическое применение в ряде областей:

  • в автономном энергоснабжении жилых объектов;
  • машиностроении;
  • сельском хозяйстве и на лесозаготовительных предприятиях;
  • авиастроении и космонавтике.

Все перечисленные сферы деятельности объединяет невозможность использования традиционных энергоресурсов или чрезмерная дороговизна формирования их запасов. При этом альтернативные источники энергии – солнечный свет, энергия ветра, гидроэнергетика – не дают требуемой мощности и оказываются здесь практически бесполезны.

Мотор – генератор Адамса «Вега» имеет важную особенность. Он не требует приложения сил для постоянного движения вала. Это происходит в автоматическом режиме за счет импульса от преобразования кинетической и электромагнитной энергии. Таким образом, устройство может:

  • без ограничений эксплуатироваться в условиях отсутствия электроэнергии на открытом и закрытом пространстве, не боясь действия осадков;
  • работать без перерыва, давая необходимое количество электричества;
  • эксплуатироваться без оглядки на экологические проблемы, т.к. не причиняет вреда человеку и окружающей среде;
  • собираться самостоятельно;
  • устанавливаться и использоваться в условиях дефицита свободного пространства;
  • прослужить несколько десятков лет.

Как сделать вечный двигатель

Самодельные генераторы на неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.

На роторные диски наклеивают магниты. Автор конструкции, представленной на фото в статье, взял двадцать штук размером 25*8 миллиметров. Можно использовать разное количество полюсов.

В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, – «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.

Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

https://youtube.com/watch?v=0yb8ET-PoD0

Конструирование тихоходного дискового трёхфазного генератора переменного тока на мощных неодимовых магнитах

Можекин Д.С. 1
1МАОУ «Лицей №97»

Красавин Э.М. 1Касауров Ю.А. 2
1Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №

2МБУОДО ЦДОД

Работа в формате PDF1 MB

Автор работы награжден дипломом победителя II степени

Диплом школьникаСвидетельство руководителяСвидетельство руководителя


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Генератор переменного тока – это устройство, которое преобразует механическую энергию в электрическую. Большинство генераторов переменного тока используют вращающееся магнитное поле. В первой половине 19 века были созданы первые однофазные многополюсные генераторы переменного тока. Но в самых первых, появившихся в то время электронных устройствах, применялся только постоянный ток, а переменный ток долгое время не мог найти своего практического применения. Со временем выяснилось, что намного практичнее использовать не постоянный, а переменный ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций. Генераторы переменного тока более просты по устройству, экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Эти электрические машины были более надёжны в эксплуатации и сразу нашли свое широкое применение в промышленных и бытовых сферах. В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес – центрах, в качестве альтернативного источника питания. Широкое применение, эти электрические машины, нашли на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием. Трёхфазные генераторы переменного тока с встроенным полупроводниковым мостовым трёхфазным выпрямителем используются на современных автомобилях для зарядки автомобильного аккумулятора, а также для питания электропотребителей, таких как система зажигания, автомобильная светотехника, бортовой компьютер, система диагностики и других. Генераторы переменного тока применяются в гибридных автомобилях, позволяющих совмещать тягу двигателя внутреннего сгорания и электродвигателя. Актуальность вопроса конструирования лёгких и мощных электрических машин переменного тока возникла, в связи с широким развитием альтернативной энергетики. Системы альтернативной энергетики (ветрогенераторы, малогабаритные водные электростанции) потребовали новых подходов к конструированию электрических машин переменного тока. Для работы с альтернативными энергетическими ресурсами необходима лёгкость и малогабаритность конструкции, но не в ущерб её мощности. Повышение эффективности работы генератора возможно с созданием мощного магнитного поля и увеличением числа обмоток. И то и другое можно осуществить, используя постоянные магниты из редкоземельных металлов и большое количество плоских катушек, пересекающих магнитное поле. Возможность разработки и создания лёгкой и, в тоже время мощной малогабаритной электрической машины переменного тока, в домашних условиях легло в основу рабочей гипотезы данной работы.

Вечный двигатель Перендева

Альтернативный движок высокого качества, производящий энергию исключительно за счет магнитов. База — статичный и динамичный круги, на которых в задуманном порядке располагается несколько магнитов. Между ними возникает самооталкивающая сила, из-за которой и возникает вращение подвижного круга. Такой вечный двигатель считают очень выгодным в эксплуатации.

Вечный магнитный двигатель Перендева

Существует и множество других ЭМД, схожих по принципу действия и конструкции. Все они еще несовершенны, поскольку не способны долгое время функционировать без каких-либо внешних импульсов. Поэтому работа над созданием вечных генераторов не прекращается.

Конструкция генератора

Устройство состоит из:

  • Непосредственно генератора. Его роль выполняет герметичная цилиндрическая емкость, внутри которой под воздействием наружных катушек создается электромагнитное поле.
  • Конвертера-преобразователя напряжения. Здесь происходит генерация тока путем преобразования магнитных импульсов.
  • Аккумуляторных батарей, накапливающих выработанный заряд для его последующего расходования.

Общая схема действия генератора – вращение подвижной части вследствие ее отталкивания от торцов электромагнитов по причине разности заряда. Многополюсный безредукторный генератор прямого вращения окружен магнитами, число которых подбирается расчетным путем в зависимости от необходимой мощности конструкции. Создание электромагнитного поля запускает вращение генератора вокруг собственной оси, давая КПД более 90%. Можно соединить сразу несколько генераторов в автономную электросистему с высокой суммарной мощностью. Согласно отзывам умельцев, сконструировавших прибор, такой мотор Адамса работоспособен и даже полезен, если использовать его как источник энергии для «небольших» потребителей.

https://www.youtube.com/watch?v=sPD0ao5f96Y

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:
  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:
  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:
  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:
  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Вероятно, Вам также понравятся следующие материалы:Супермаховик- альтернативный накопитель энергии

Спасибо, что дочитали до конца! Не забывайте , Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

Видео в помощь

https://youtube.com/watch?v=NFm06u9YLLc

Источники

  • https://220v.guru/elementy-elektriki/dvigateli/magnitnyy-vechnyy-dvigatel-delaem-svoimi-rukami.html
  • https://www.asutpp.ru/magnitnyj-dvigatel.html
  • https://www.syl.ru/article/189970/new_kak-sdelat-vechnyiy-dvigatel-svoimi-rukami
  • https://dic.academic.ru/dic.nsf/ruwiki/839655
  • https://odinelectric.ru/knowledgebase/chto-takoe-magnitniy-dvigatel
  • https://MirMagnitov.ru/blog/primenenie-magnitov/vechnyy-dvigatel-na-magnitakh/
  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
  • https://220v.guru/elementy-elektriki/dvigateli/vechnyy-dvigatel-svoimi-rukami-ego-opisanie-i-vidy.html
  • https://yourtutor.info/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%B2%D0%B5%D1%87%D0%BD%D1%8B%D0%B9-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D0%BD%D0%B5%D0%B2%D0%BE%D0%B7%D0%BC%D0%BE%D0%B6%D0%B5%D0%BD

Двигатель из болтов и магнитов своими руками

Приветствую всех любителей электродвигателей.

Сегодня я расскажу, как сделал самодельный мотор, используя всего три болта, немного проволоки и магниты.

Первым делом в дощечке просверлил отверстия под болты и по центру для крепления ротора.

Намотал на болты изоляцию в виде малярного скотча и начал делать обмотку, направление в одну сторону и количество витков должно быть одинаковым.

Из металлической пластины вырезал окружность и сделал разметку. Приклеил к ней по центру крепление подшипника и с помощью оргстекла установил неодимовые магниты, поочередно меняя их полярность.

Подключил к выводам катушек контроллер и сделал первый запуск.

Первый запуск произошел удачно, могу сказать одно, хоть обороты и большие, но крутящий момент маленький.

Я захотел более плавной работы мотора и сделал его на шести болтах и добавил магнитов, их стало 12.

В этот раз закрепил все на металлической пластине.

Установил ротор на свое место.

Запустил мотор, обороты стали медленнее, но вырос крутящий момент и стабильность мотора.

Самодельный мотор из болтов был экспериментом и довольно удачным, опытным путем я понял, что сделать мотор с нуля реально и легко.

Всем большое спасибо за дочитывание, успехов и побольше позитива.

Почему он работает

Электродвигатель из батарейки

начинает работать потому, что на возникшее в проволоке движение заряженных частиц (электрический заряд) воздействует магнитное поле, которое отклоняет направление их движения. В физике это отклонение зовется силой Лоренца.

Для лучшего понимания всего процесса, посмотрите данное видео.

На днях показывал ребенку как работает электромотор. Вспомнил эксперимент по физике из школы.

Исходные материалы:

  1. Батарейка АА
  2. Эмалированный провод 0.5 мм
  3. Магнит
  4. Две скрепки, размером примерно с батарейку
  5. Канцелярский скотч
  6. Пластилин

Загибаем часть скрепки.

Наматываем катушку из эмалированного провода. Делаем 6-7 витков. Концы провода фиксируем узелками. Затем зачищаем. Один конец полностью очищаем от изоляции, а другой только с одной стороны. (На фото правый конец зачищен снизу)

Фиксируем скрепки на батарейке скотчем. Устанавливаем магнит. Крепим всю конструкцию на столе при помощи пластилина. Далее надо правильно поставить катушку. Когда катушка установлена, зачищенные концы должны касаться скрепки. В катушке возникает магнитное поле, у нас получается электромагнит. Полюса постоянного магнита и катушки должны быть одинаковыми, то есть они должны отталкиваться. Сила отталкивания поворачивает катушку, один из концов теряет контакт и магнитное поле исчезает. По инерции катушка поворачивается, снова появляется контакт и цикл повторяется. Если магниты притягиваются, мотор крутится не будет. По этому один из магнитов надо будет перевернуть.

Созданием вечного двигателя люди озадачились давно. В теории возможность осуществления этого устройства отрицается постулатами термодинамики. А мы и не будем пытаться. Это так, для интриги.

Возьмем обычную пальчиковую батарейку, неодимовый магнит и медную проволоку. Кроме эстетической стороны, проволока должна быть изогнута так, чтобы иметь крепление и центр тяжести в одной точке

Это важно для устойчивости и вращения конструкции

Собираем электромотор

На магнит ставим батарейку и затем водружаем на них сердце из проволоки. Система начинает вращаться.

Происходит это потому, что в проволоке возникает электрический заряд. А это ничто иное как упорядоченное движение заряженных частиц. На каждую из них действует магнитное поле, которое отклоняет направление их движения. Это отклонение зовется силой Лоренца. Физическим языком — это сила, с которой электромагнитное или магнитное поле воздействует на точечную заряженную частицу. Частным случаем силы Лоренца является ситуация, когда магнитное поле направлено перпендикулярно вектору скорости. В этом случае сила становится центростремительной.f действующая на заряженную частицу (зарядаq ) при движении (со скоростьюv ).

То есть заряженные частицы движутся по окружности, создавая вращение конструкции. Особо любопытные могут даже рассчитать скорость вращения, получив ее формулу из следующего выражения:

Батарейка через какое-то время сядет, и движение прекратится. А впечатление останется. В медном сердце не живут воспоминания, в отличие от настоящего. Хм… Впечатления, воспоминания, любовь, как это ни банально, — чем не вечный двигатель?!

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Краткий обзор известных конструкций

Среди большого количества конструкций магнитных двигателей можно выделить следующие:

  1. Двигатели магнитного типа Калинина. Конструкция полностью неработоспособна, так как не доведен до ума механизм пружинного компенсатора.
  2. Магнитно-механический мотор конструкции Дудышева. Если произвести грамотную доводку, то такие двигатели могут работать практически вечно.
  3. «Перендев» — электромагнитные моторы, выполненные по классической схеме. На роторе устанавливается компенсатор, но он не способен работать без коммутации при прохождении мёртвой точки. А чтобы ротор проходил мертвую точку удержания, можно выполнить коммутацию двумя вариантами — с помощью электромагнита и механического устройства. Такая конструкция не может претендовать на звание «вечный двигатель». Да и у простого асинхронного двигателя электромагнитный момент окажется значительно выше.
  4. Электромагнитные двигатели конструкции Минато. Выполненный по классической схеме, представляет собой обычный электромагнитный мотор, у которого очень высокий коэффициент полезного действия. С учётом того, что конструкция не может достичь КПД в 100 %, она не работает как «вечный двигатель».
  5. Моторы Джонсона являются аналогами «Перендев», но у них меньше энергетика.
  6. Мотор-генераторы Шкондина представляют собой конструкцию, которая работает при помощи силы магнитного отталкивания. Компенсаторы в моторах не используются. Не способны работать в режиме «вечного двигателя», коэффициент полезного действия не более 80 %. Конструкция очень сложная, так как в ней присутствуют коллектор и щеточный узел.
  7. Наиболее совершенным механизмом является мотор-генератор конструкции Адамса. Это очень известная конструкция, работает по такому же принципу, как и мотор Шкондина. Вот только в отличие от последнего, отталкивание происходит от торца электромагнита. Конструкция устройства намного проще, нежели у Шкондина. Коэффициент полезного действия может составлять 100 %, но в том случае, если производить коммутацию обмотки электромагнита при помощи короткого импульса с высокой интенсивностью от конденсатора. В режиме «вечного двигателя» работать не может.
  8. Электромагнитный двигатель обратимого типа. Магнитный ротор находится снаружи, внутри установлен статор из электромагнитов. Коэффициент полезного действия приближается к 100 %, так как магнитопровод разомкнут. Такой электромагнитный соленоидный двигатель способен работать в двух режимах – мотора и генератора.