Как работает транзистор: простым языком для чайников, схемы

Содержание

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Японская система JIS

Стандарты маркировки, выработанные в Японии представлены буквами и цифрами в количестве 5 штук:

  1. Цифра под номером 1 – тип полупроводникового транзистора: 0 – обозначение фотодиода или фототранзистора; 1 – обозначение диода; 2 – обозначение транзистора;
  2. Буквенный символ S проставляется на каждом выпущенном элементе;
  3. Третий по счету маркировочный элемент говорит о разновидности детали: А – PNP с высокой частотностью; В – PNP с низкой частотностью; С — NPN с высоким уровнем частотности; D — NPN с низким уровнем частотности; Н – однопереходной; J — транзистор полевого типа с N-каналом; К — транзистор полевого типа с P-каналом;
  4. Цифра под номер 4 – номер серии в диапазоне от 10 до 9999;
  5. Пятый символ маркировки обозначает модификацию. Иногда данный символ отсутствует.

Бывают ситуации, когда в кодировке присутствует 6 символ – это дополнительная литера N, M или S, которая отвечает за соответствие прибора определенным стандартам. Маркировка, разработанная в Японии, не предусматривает использование обозначений цветом.


Источники

  • https://habr.com/ru/post/133136/
  • https://remont220.ru/osnovy-elektrotehniki/1098-tranzistor/
  • https://remont220.ru/stati/595-shemy-vklyucheniya-tranzistorov/
  • https://go-radio.ru/transistor.html
  • https://tyt-sxemi.ru/tranzistor/
  • https://tokar.guru/hochu-vse-znat/tranzistor-vidy-primenenie-i-principy-raboty.html
  • https://raschet.info/cvetovaja-i-simvolno-cvetovaja-markirovka-tranzistorov/
  • https://www.radiodetector.ru/markirovka-tranzistorov/

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).

Таким образом, эта оптопара выступает в роли драйвера
симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 220 В в электросети — это значение
действующего напряжения. Пиковое напряжение равно $\sqrt2 \cdot 220 \approx
310\,В$.

Биполярные транзисторы

Биполярные транзисторы относятся к группе полупроводниковых приборов. Они имеют три вывода и два р-n-перехода. Принцип работы этих устройств позволяет использовать и положительные и отрицательные заряды, то есть, дырки и электроны. Управление током, протекающим через них, осуществляется специально выделенным управляющим током. Благодаря своим качествам, этот активный прибор получил широкое распространение.

Основой биполярных транзисторов являются трехслойные полупроводники, типа «р-n-р» и «n-р-n», а также р-n-переходы, в количестве двух. Каждый полупроводниковый слой соединяется с внешним выводом через невыпрямляющий металло-полупроводниковый контакт.

В качестве базы используется средний слой, подключенный к соответствующему выводу. Два крайних слоя также соединяются с выводами и называются эмиттером и коллектором. На схемах эмиттер обозначается стрелкой, которая показывает направление тока, проходящего через транзистор.

В различных приборах, носители электричества дырки и электроны выполняют собственные индивидуальные функции. Тип n-р-n транзисторов получил наибольшее распространение, по сравнению с р-n-р-типом, благодаря лучшим характеристикам и параметрам. Это связано с тем, что в n-р-n устройствах основная роль отводится электронам, обеспечивающим все электрические процессы. Их подвижность в 2-3 раза выше, чем у дырок, таким образом, они проявляют более высокую активность. Кроме того, свойства любого прибора улучшаются за счет того, что площадь перехода коллектора существенно превышает площадь перехода эмиттера.

В состав каждого биполярного транзистора входят два р-n-перехода. Поэтому, работоспособность таких приборов проверяется путем контроля сопротивления этих переходов во время подключения к ним прямого и обратного напряжения.

Нормальная работа n-р-n-прибора обеспечивается путем подачи на коллектор положительного напряжения. За счет этого, осуществляется открытие базового перехода. При появлении базового тока, возникает коллекторный ток. Если в базе возникает отрицательное напряжение, то в этом случае происходит закрытие транзистора.

Оптимальная работа р-n-р-устройств зависит от наличия на коллекторе отрицательного напряжения. С его помощью, базовый переход становится открытым. Закрытие транзистора производится при наличии положительного напряжения. Путем плавных изменений значений тока и напряжения, можно получить все необходимые выходные коллекторные характеристики. В схемах усилителей могут присутствовать режимы общей базы или общего эмиттера.

Устройство полевых транзисторов

Полевые транзисторы устроены немного по-другому. Здесь управление работой прибора осуществляется с помощью электрического поля, которое направлено перпендикулярно току. Подобно биполярным транзисторам, полевые тоже имеют три вывода, которые, правда, называются иначе: исток, сток и затвор. Электрическое поле создаётся с помощью определённого напряжения, приложенного к затвору, который служит аналогом базы биполярного транзистора.

Устройство полевого транзистора с p-n-переходом

Также у полевого транзистора имеется проводящий слой, который называют каналом. По нему и течёт ток. Канал может быть N или P-типа, а также иметь различную пространственную конфигурацию. Каналы могут быть обогащёнными носителями или обеднёнными.

Существуют полевые транзисторы с управляющим p-n-переходом и с полностью изолированным затвором.

Устройство полевого транзистора с изолированным затвором

Как считают транзисторы

Транзисторы соединены таким хитрым образом, что, когда на них подаётся ток в нужных местах, они выдают ток в других нужных местах. И всё вместе производит впечатление полезной для человека математической операции.

Пока что не будем думать, как именно соединены транзисторы. Просто посмотрим на принцип.

Допустим, нам надо сложить числа 4 и 7. Нам, людям, очевидно, что результат будет 11. Закодируем эти три числа в двоичной системе:

Десятичная  Двоичная
4 0100
7 0111
11 1011

Теперь представим, что мы собрали некую машину, которая получила точно такой же результат: мы с одной стороны подали ей ток на входы, которые соответствуют первому слагаемому; с другой стороны — подали ток на входы второго слагаемого; а на выходе подсветились выходы, которые соответствовали сумме.

Смотрите, что тут происходит: есть восемь входов и четыре выхода. На входы подается электричество. Это просто электричество, оно не знает, что оно обозначает числа. Но мы, люди, знаем, что мы в этом электричестве зашифровали числа.

Так же на выходе: электричество пришло на какие-то контакты. Мы как-то на них посмотрели и увидели, что эти контакты соответствуют какому-то числу. Мы делаем вывод, что эта простейшая машина сложила два числа. Хотя на самом деле она просто хитрым образом перемешала электричество.

Вот простейший пример компьютера, собранного на транзисторах. Он складывает два числа от 0 до 15 и состоит только из транзисторов, резисторов (чтобы не спалить) и всяких вспомогательных деталей типа батарейки, выключателей и лампочек. Можно сразу посмотреть концовку, как он работает:

https://youtube.com/watch?v=xISG4nGTQYE

Вот ровно это, только в миллиард раз сложнее, и происходит в наших компьютерах.

Что мы знаем на этом этапе:

  1. Транзисторы — это просто «краны» для электричества.
  2. Если их хитрым образом соединить, то они будут смешивать электричество полезным для человека образом.
  3. Все компьютерные вычисления основаны на том, чтобы правильно соединить и очень плотно упаковать транзисторы.

В следующей части разберем, как именно соединены эти транзисторы и что им позволяет так интересно всё считать.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

https://youtube.com/watch?v=oNHuk_BwcfU

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля

Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля

Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Что такое транзистор

Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.

Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.

Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.

Разновидности по принципу действия:

  • биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
  • полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.

У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.

Как проверить полевой транзистор мультиметром и специальным тестером

Автор С Косенко из Воронежа в журнале Радио №1 за 2005 год показал свою разработку прибора проверки полевых транзисторов. Его имя: ППТ-01. Он объяснил принципы его работы, сборки, наладки, эксплуатации доступным языком.

Новичкам это все должно быть интересно, советую читать такие журналы и больше экспериментировать. Вам нужен практический опыт.

Сейчас подобные приборы выпускаются промышленным способом. Они позволяют проверять транзисторы, тиристоры, симисторы и другие электронные компоненты, точно узнать каждый параметр.

Доступная цена и широкие возможности этих тестеров обеспечивают их популярность. Ведь вся проверка сводится к установке выводов полупроводника в контактные гнезда и нажатию кнопки: результат автоматически отображается на дисплее.

Однако все эти операции вполне можно выполнить обычным цифровым мультиметром или аналоговым стрелочным тестером. Для этого нам потребуется посмотреть заводскую маркировку и найти по ней технические характеристики, определиться с конструкцией (JFET или MOSFET) и проводимостью канала.

Затем нужно вспомнить устройство своего мультиметра или тестера, перевести его в режим прозвонки либо измерения сопротивлений (для аналоговых приборов).

На моем карманном MESTEK MT-102 плюс присутствует на красном щупе, а минус — на черном. У вас скорее всего аналогично, но проверьте. Знак дисплея 0L (или 1 на других моделях) означает величину сопротивления (∞), которая превышает предназначенный диапазон измерения.

Проверку выполняем двумя этапами, последовательно соблюдая очередь:

  1. оцениваем исправность цепи сток-исток или, более точно, встроенного диода;
  2. анализируем открытие и закрытие выходной цепи при подаче управляющего сигнала.

Режим проверки №1

Перед началом работы кратковременно зашунтируйте все выводы полевика. Этим действием убирается возможный потенциал на его электродах, который может помешать замеру.

Результаты измерений на табло показываю для исправного мосфета. У поврежденного переходы будут отличаться: пробиты или оборваны.

На картинке показываю два измерения для n-канального транзистора. Схему его собрата с p-каналом привел для образца в правом нижнем углу. Действия для него аналогичны, а результат зависит от проводимости.

При первом замере ставим красный щуп с потенциалом плюса на сток, а черный на исток. Если диод исправен, то показания на приборе будут порядка 400-600. Это величина падения напряжения в милливольтах. Таким способом мультиметр в режиме прозвонки оценивает состояние полупроводникового перехода p-n полярности.

Для второго замера меняем щупы местами. Диод закрыт, его огромное сопротивление показывается как 0L.

Очередность этих замеров можно произвольно изменять.

Проверка мосфета положительной проводимости проводится аналогично, а индикацию на табло вам подскажет направление встроенного диода на рисунке.

Режим проверки №2

Оставляем черный щуп на истоке, а красный переставляем на затвор. Этим действием мы подаем ему положительный потенциал с мультиметра. На табло будет отображаться 0L, но транзистор должен открыться.

Проверяем открытие перестановкой красного щупа на сток. Изменение показаний на табло (единицы или десятки) станет достоверной информацией об его открытии. В этом можно убедиться, поменяв щупы между стоком и истоком. Показания останутся примерно в тех же пределах.

Теперь потребуется закрыть мосфет. Смотрим на замер №3: красный щуп ставим на исток, черный — затвор. Показание 0L.

Логика проверки p-канального типа полевика аналогична. Только надо помнить, что он открывается подачей отрицательного напряжения на затвор относительно истока, то есть «прижимается к земле».

Убедившись в исправности встроенного диода, открытии и закрытии силового перехода сток-исток, можно сделать вывод об исправности МДП транзистора.

Однако описанный метод не во всех случаях может обеспечить достоверные результаты. И дело здесь кроется в конструкции вашего мультиметра. Его выходного напряжения может просто не хватить для подачи отпирающего или запирающего потенциала на затвор.

Поэтому более достоверную проверку выполняют двумя мультиметрами:

  • одним контролируют состояние перехода сток-исток;
  • вторым управляют потенциалом на затворе.

Естественно, что заменить один из мультиметров можно самодельным источником напряжения, например, двумя батарейками АА (3 вольта) или омметром с предварительно оцененными характеристиками.

Принцип таких измерений показывает в своем видеоролике Дмитрий Гильмутдинов. Рекомендую посмотреть.

https://youtube.com/watch?v=lBmP8mXVtSQ

Маркировка года и месяца изготовления электронных компонентов

Согласно ГОСТ 25486-82, для того, чтобы обозначить месяц и год изготовления транзистора и других электронных компонентов, используются буквы и цифры: первое значение – год, второе значение – месяц. Что касается приборов, изготовленных за рубежом, для обозначения даты выпуска применяется кодировка из четырех цифр, где первые две – это год, следующие – номер модели.

Каждому году соответствует своя буква:ГодКод

1986 U
1987 V
1988 W
1989 X
1990 A
1991 B
1992 C
1993 D
1994 E
1995 F
1996 H
1997 I
1998 K
1999 L
2000 M
2001 N
2002 P
2003 R
2004 S
2005 T
2006 U
2007 V
2008 W
2009 X
2010 A
2011 B
2012 C
2013 D
2014 E
2015 F

Маркировка месяцаМесяцКод

Январь 1
Февраль 2
Март 3
Апрель 4
Май 5
Июнь 6
Июль 7
Август 8
Сентябрь 9
Октябрь O
Ноябрь N
Декабрь D

Чтобы обозначить месяц выпуска, применяются не только цифры, но и некоторые буквы: месяцы с января по сентябрь полностью соответствуют цифрам, следующие – первым буквам названия месяца.