Радиоэлектроника и схемотехника

Содержание

Схема цветомузыки

В данной схеме три транзистора разной мощности, три светодиода – зеленый, синий, красный, и резисторы с конденсаторами.

Красный диод горит при низких частотах в сигнале и имеет соответствующий фильтр, синий для среднего диапазона, и зеленый, когда звук «пищит». С резисторами подстройки R4 — R6 можно настроить чувствительность каждого из трех каналов.

Транзисторы VT1 – VT3 задают коммутацию диодов, и сюда подойдут маломощные n-p-n транзисторы, вроде BC547, BC337, КТ3102. Если одиночных лампочек маловато, то можно впаять в схему куски светодиодной гирлянды, и ставить транзисторы помощнее, например, BD139, 2N4923, КТ961.

А входной сигнал «заливается» с любого аудиоустройства, к примеру со смартфона или ноутбука. Если же схема еле мерцает и света явно не хватает, то стоит спаять однотранзисторный «усилок», например на основе КТ3102.

Но для той же цели подойдет любой маломощный транзистор. Подстроечным резистором R1 получится управлять уровнем сигнала, идущего на цветомузыку. Вольтаж у него 9 – 12 вольт, и он усилит любой слабый сигнал, даже с выхода смартфона.

Дальше идет еще одна сложная для неискушенного радиолюбителя часть – печать платы.

Но научно-технический прогресс и его доступность выручают и здесь. Плату можно изготовить методом лазерно-утюжной технологии, для чего понадобится лазерный принтер, фольгированный текстолит, глянцевая бумага (печатать нужно с глянцевой стороны в зеркальном отображении), мелкая шкурка-нулевка и утюг.

  • печатаем плату на глянце, выставив в настройках плотность и контрастность тонера на максимум,
  • зашкуриваем и обезжирить заготовку платы ацетоном, бензином или специальным обезжиривателем;
  • прикладываем рисунком к плате, не касаясь рабочей поверхности пальцами;
  • проглаживаем заготовку утюгом;
  • смываем водой и щеткой слой бумаги с платы;
  • вытравливаем плату в емкости с раствором хлорного железа или медного купороса на час-полтора (рекомендуется сверху приклеить кусочек пенопласта или другого материала который не разъест купорос, за который потом придется вынимать плату);
  • смываем растворителем остатки тонера с платы;
  • сверлим отверстия под детали и лудим дорожки, плата готова к пайке.

Скачать плату:

Чтобы подключить питание и звуковывод, лучше использовать клеммы для удобства. Закончив пайку, нужно аккуратно протереть плату, на всякий случай прозвонить.

Для этого подойдет вставляемый в вывод смартфона или плеера разветвитель. После этого регулированием резисторов можно добиться одинаковой яркости свечения резисторов – сначала с помощью R1, потом с R4 — R6.

Planar Antennas: Design and Applications

Title: Planar Antennas : Design and ApplicationsAuthor: Praveen Kumar MalikYear: 2022Publisher: CRC PressEnglish languageFormat: pdf (true)Pages: 365Size: 24,33 MbThe increasing demand for wireless communications has revolutionised the lifestyle of today’s society and one of the key components of wireless technology is antenna design. Broadband planar antennas are the newest generation of antennas boasting the attractive features required, such as broad operating bandwidth, low profile, light weight, low cost and ease of integration into arrays or Radio Frequency (RF) circuits, to make them ideal components of modern communications systems. Research into small and broadband antennas has been spurred by the rapid development of portable wireless communication devices such as cell phones, laptops and personal digital assistants.

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R  – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук.  Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания  в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды  – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания,

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V  – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод, стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT – транзистор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Программы для разводки печатных плат

программы для радиолюбителей

На данный момент существует множество программ и онлайн сервисов для разводки печатных плат. Когда в интернете находишь интересную электронную схему то сразу хочется её собрать своими руками, но не всегда к ней прилагается рисунок печатной платы. Когда-то давно, дорожки рисовали лаком на фольгированном текстолите. Сейчас радиолюбители не рисуют дорожки от руки, а распечатывают с помощью лазерного принтера — эта технология называется ЛУТ. Можно отдать схему специалистам, которые за определённую сумму все сделают, но лучше освоить одну из программ и сделать все своими руками.

Я подобрал несколько программ для разводки (трассировки) печатной платы.

Sprint-Layout

Самая популярная программа среди радиолюбителей, почти все новички начинали именно с неё. Простой и понятный интерфейс, существует русифицированная версия. Спринт лайт имеет большую базу электронных компонентов (макросов), которые можно скачать в интернете. Огромное количество обучающих видеороликов на Ютубе, помогут освоить весь интерфейс и научат рисовать печатные платы. Программа является условно — бесплатной.

easyeda

Китайский онлайн сервис с большими возможностями. В Китае студенты создают проекты с помощью данного сервиса и его преподают в некоторых учебных заведениях. Основное удобство заключается в том что созданные проекты можно редактировать на любом компьютере с доступом в интернет, необходимо только пройти простую регистрацию для создания аккаунта. Easyeda имеет огромную базу электронных компонентов которые постоянно обновляются и добавляются самими пользователями. Данный сервис имеет функцию автоматической трассировки печатной платы и симуляцию электронных схем. Интерфейс интуитивно понятный с поддержкой русского языка. После того как печатная плата разведена на дорожки её можно заказать в этом сервисе, причем промышленного качества, а можно и не заказывать, а распечатать на принтере и сделать самому. Также можно открыть доступ к проекту и делится им с другими пользователями или совместно создавать один проект.

ZenitPCB

Простая и бесплатная программа для рисования принципиальных схем с возможностью трассировки. Минусом является ограничение контактных площадок в 800 штук. База элементов около 1000.

DesignSpark PCB

Мощная программа с возможностью автоматической трассировки печатных плат. Подходит как для новичков так и для профессионалов.
DesignSpark PCB это бесплатная программа со встроенными специализированными калькуляторами для разных расчётов облегчающими подбор компонентов. На официальном сайте можно скачать библиотеку готовых печатных плат. Единственный минус это отсутствие русского языка в интерфейсе.

Я пользуюсь двумя;
Программа Sprint-Layout
Онлайн сервис easyeda.com
Для моей деятельности, на данном этапе моего развития, этого вполне хватает. В освоении перечисленных программ, справится любой начинающий радиолюбитель.

Дальше »

Отечественные и зарубежные микрофоны и телефоны

Отечественные и зарубежные микрофоны и телефоны. Систематизированы данные и приведена классификация по микрофонам и телефонам, используемым в системах радиовещания, телевидения, телефонии, проводной связи, звукоусиления, записи, воспроизведения и других целей. Приведены технические характеристики современных отечественных и зарубежных микрофонов, радиомикрофонов и телефонов профессионального и бытового назначения. Для каждого прибора даны рекомендации по его эксплуатации. Рассмотрены основные электроакустические характеристики, параметры, нормы внешних воздействующих факторов.

10RS антенна UA9TC, 10 элементов 144-146МГц.

10RS антенна UA9TC

10RS антенна UA9TC 10 элементов 144-146МГц. Антенна 10RS. Сегодня сделаем обзор 10 элементной антенны 10RS. Длина этой антенны 5 метров 30 сантиметров. Элементы выполнены из алюминия диаметром 8 миллиметров.  Бум делаем каждый по-своему, он как бы в расчётах влияния не имеет, если сделано все правильно.  Бум может быть любым. Не принципиально, лишь бы правильно. Я делаю из алюминиевого профиля одного или разного диаметра. Элементы пропускал сквозь бум, а активный над бумом. UA9TC 10 элементов 144-146МГц уже конечно 10, а не 5, так и все характеристики значит будут лучше.

Smartphone-Based Detection Devices

Title: Smartphone-Based Detection Devices: Emerging Trends in Analytical TechniquesAuthor: Chaudhery Mustansar HussainYear: 2021English languageFormat: pdf, epubPages: 854Size: 19.49 MbSmartphone usage has created a new means for detection, analysis, diagnosis and monitoring through the use of new apps and attachments. These breakthrough analytical methods offer ways to overcome the drawbacks of more conventional methods, such as the expensive instrumentation that is often needed, complex sample pre-treatment steps, or time-consuming procedures. Smartphone-Based Detection Devices: Emerging Trends in Analytical Techniques gathers these modern developments in smartphone analytical methods into one comprehensive source, covering recent advancements in analytical tools while paying special attention to the most accurate, highly efficient approaches.

Усилители на TDA с небольшим описанием

Подборка усилителей на микросхемах серии TDA. Серия TDA знаменита своими микросхемами, которые позволяют собрать усилители любого класса и любой сложности.

Усилитель на TDA2005 или TDA2004

Усилитель звука выполнен по мостовой схеме. Открыть в полном размере

В нем предусмотрена защита выходного каскада от короткого замыкания, термозащита (отключение при перегреве в результате больших нагрузок), защита от скачков напряжения до 40 В, а также защита от отключения общего провода.

В этом усилителе присутствует защита оконечного каскада от замыкания. А также предусмотрена термозащита, которая отключает усилитель при перегреве во время больших нагрузок. Еще есть защита от скачков до 40 вольт, и защита от случайного отсоединения общего провода.

Назначение выводов

Номер вывода Назначение
1 Неинвертирующий вход 1
2 Инвертирующий вход 1
3 Вывод фильтра
4 Инвертирующий вход 2
5 Неинвертирующий вход 2
6 Общий
7 Вход обратной связи 2
8 Выход 2
9 Напряжение питания
10 Выход 1
11 Вход обратной связи

Характеристики микросхемы

Параметр Значение
Uпит 8 — 18 В
Iвых 1 А
Iпокоя 50 мА
Pвых 20 Вт
Rвх 100 кОм
Коэффициент усиления 48 дБ
Полоса частот 20 — 20 000 Гц
Коэффициент гармоник 0,5
Rнагр 4 Ом

Мощный УНЧ на TDA8924

Высокая эффективность усилителя (около 90 %) и широкий диапазон рабочего напряжения (+-30 В).

У этой микросхемы много преимуществ:

  • Низкий ток потребления;
  • Малые искажениях;
  • Постоянный коэффициент усиления порядка 28 дБ;
  • Выходная мощность стерео 2х50 Вт;
  • Хорошее подавление пульсаций;
  • Есть возможность внешней синхронизации;
  • Отсутствие помех при включении/выключении;
  • Защита от короткого замыкания;
  • Можно ограничить выходную мощность;
  • Защита от перегрева;
  • И защита от электростатики на всех выводах.

Характеристики микросхемы

Параметр Обозначение Минимальное Среднее Максимальное Единица измерения
Напряжение питания Uпит +-12,5 +-24 +-30 В
Ток потребления в холостом режиме Iпотр 100 мА
КПД 83 %
Выходная мощность 120 Вт
Выходная мощность в режиме моста 240 Вт

Двухканальный усилитель звука на TDA8920

У этой схемы высокая эффективность (порядка 90%) и широкий диапазон напряжения (около +-30 В).

Преимущества схемы

Схема простая и ее основой служит микросхема TDA8920.

Эта микросхема обладает следующими особенностями:

  • Низкий ток потребления;
  • Небольшие искажения сигнала;
  • Постоянный коэффициент усиления схемы УНЧ с этой микросхемой будет равен 30 дБ;
  • Выходная мощность 2х50 Вт;
  • Можно сделать ограничитель на выходную мощность;
  • Хорошее подавление пульсаций;
  • Возможность включения микросхемы в режиме стерео или в мостовом режиме;
  • Дифференциальные аудиовходы;
  • Защита от замыкания;
  • Защита от высоких температур во время работы;
  • Обладает защитой от электростатических разрядов на всех выводах.

Характеристики микросхемы TDA8920

Параметр Обозначение Минимум Среднее Максимальное Единица измерения
Напряжение питания Uпит +-15 +-25 +-30 В
Ток потребления в холостом режиме Iпотр 50 60 мА
КПД 85 90 %
Выходная мощность 35 Вт
Коэффициент усиления (замкнутый контур) Кусил 29 30 31 Дб
Входное сопротивление Rвх 80 120 кОм
Напряжение шума Uшума 100 мкВ
Разделение каналов 50 дБ

Post Views:
2 201

Схема мощного тиристорного регулятора напряжения

Cхемы электронных устройств

 С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.

Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2  и переменный резистор R5 образуют фазосдвигающую цепочку.

Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.

В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.

Используемые детали

  • R1, R2, R3, R4 — 51 Ом
  • R5 — 270 кОм
  • VS1 — КУ202Н
  • VS2 — КУ202Н
  • VS3 — КН102А
  • VS4 — КН102Н
  • C1 — 0,25 мкФ
  • C2 — 0,25 мкФ

Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.

Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.

В схеме можно использовать динисторы КН102Б  но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1

Дальше »

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

Оптоэлектронные приборы

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Кварцевый резонатор

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Если Вам проще по видео понять, вот можете посмотреть:

Схема простого металлоискателя

Самые простые электронные схемы базируются на одной микросхеме, в случае этой на TDA0161 – специализированном изделии для датчиков на основе индукции. На основе таких собирают детекторы металла, реагирующие при приближении к индукционному датчику.

Такие в некоторых случаях стоят на заводских проходных.

Детали для его сборки можно найти в магазине радиозапчастей или на алиэкспрессе. В данной схеме металлодетектр издает звук только тогда, когда обнаружит металл. Микросхема работает в диапазоне от 3,5 до 15 вольт, при поиске потребляет ток около 1 мА, в сигнальном режиме 8-12 мА, при рабочей частоте 8-10 кГц.

Запитать устройство можно с помощью телефонного аккумулятора. Также для металлоискателя понадобится «рабочий орган» в виде катушки на 140-150 витков медной проволоки, диаметром 5-7 см. При этом чувствительность прямо зависит от диаметра катушки – чем больше охват, тем чувствительнее.

Аппарат должен работать сразу после сборки, единственное в чем нуждается – в калибровке порога срабатывания переменным резистором.

Minelab E-Trac, металлоискатель

Металлоискатель Minelab E-TRAC

FBS TECHNOLOGY

Используя технологию FBS с одновременным частотным диапазоном от 1,5 кГц до 100 кГц, сигнал, полученный от катушки детектора, анализируется по широкому диапазону откликов. Это позволяет усовершенствованной системе обработки сигналов E-TRAC анализировать больше информации о цели, чтобы идентификация цели была более точной.

SMARTFIND ДИСКРИМИНАЦИЯ

Уникальная двумерная шкала дискриминации, графически отображающая свойства железа и проводимости на одном дисплее, устраняет сигналы от нежелательных целей и принимает сигналы от желаемых целей.

Шкала дискриминации с радикальной перестройкой улучшает идентификацию цели и скорость восстановления хороших целей на глубине.

Самый простой усилитель звука

В настоящий момент большая часть потребительской аудиотехники производится с использованием микросхем, в частности TDA, производимых Phillips.

Сейчас они повсеместно используются в автомобильной аудиотехнике, магнитолах, сабвуферах, системах домашних кинотеатров и других вариантах аудиоусилителей. Их популярность и дешевизна сделали их доступными в любом магазине радиоэлектронных компонентов, самых разных конфигураций и мощности.

Чтобы собрать из них своими руками «усилок», достаточно припаять несколько деталей к ножкам, прикрепить конструкцию к радиатору, поскольку схема очень сильно греется, и сделать выводы на плеер, динамики и сеть. Готово.

Поэтому – осторожность и терпение

Вариант одноканального усилителя на TDA7396

Характеристики усилителя: при нагрузке в 2 Ом до 45 Ватт. Хватит чтобы устроить дискотеку в комнате, да и с соседями поделиться настроением.

Как проверить кварцевый резонатор

Схемы пробников радиолюбителя

Иногда у радиолюбителей бывает ситуация, когда необходимо проверить кварцевый резонатор на работоспособность и определить его частоту, хотя бы примерно. Чтобы проверить кварц нужно, собрать простейший пробник на микросхеме К155ЛА3. Схема пробника очень простая и ее соберет даже начинающий радиолюбитель.

В данной схеме светодиод будет указывать на наличие генераций в кварце. Для точного определения, имеется вывод, который подсоединяется к антенне приемника или к частотомеру. С помощью конденсаторов C2-C5 и переключателя S1 можно грубо определить частоту.

Светодиод HL1 начинает светиться при возбуждении генератора D1.1 DD1.2 когда кварцевый резонатор подключен. Имея опыт работы с пробником можно определить диапазон генерации кварца по силе свечения HL1. Чем ярче светится светодиод тем ниже частота генерации и тем активнее кварц. Затем параллельно светодиоду подключается шунтирущия емкость C2-C5. Когда генератор работает на частоте выше 14 МГц конденсатор C2 «гасит» светодиод. Если на кварце написана другая частота, а при включении емкости C2 светодиод не светится, значит кварц неисправен. В таком случае генератор работает только за счет паразитной емкости кварца. При включении емкости C3 светодиод гаснет, при частоте генерации выше 7 МГц. При C4 — 2 МГц При подключении C5 — 500кГц.

Разные типы конденсаторов имеют разное индуктивное сопротивление и номиналы C2-C5 могут немного отличаться от приведенных здесь

Для удобства конденсаторы подключаются выключателем, важно чтобы длина выводов C2-C3, была минимальной.

Пробник кварцевых резонаторов хорошо работает с кварцами
От 100 кГц до 18 МГц. Питается прибор от 3 до 6 вольт.

Импортный аналог микросхемы К155ЛА3 — 7400PC
Cкачать даташит микросхемы К155ЛА3

Дальше »

Автоматический выключатель

Выключатель, гасящий свет сам – очень полезная вещь.

Схема востребована и в подвале с консервами, где не нужно возиться часами, и в личном санузле, который периодически нужно проветрить.

Принцип действия устройства по данной схеме следующий: при нажатии выключателя SB в цепь включается потребитель электроэнергии HL. По прошествии определенного времени цепь размыкается, источник, соответственно, гаснет.

Для пайки данной электросхемы взят конденсатор в 10 000 мкФ. При нажатии выключателя конденсатор получает заряд от источника питания, к примеру, с 12-вольтового батарейного блока либо аккумулятора.

После этого конденсатор разряжается через цепь R на базу транзистора, с него на эмиттер и на минус.

Поскольку до включения между коллектором и эмиттером транзистора сопротивление было очень большим, то после включения задействовалась цепь с катушкой реле на 12 вольт, которая создала магнитное поле, притянувшее контакты на 220 вольт. Выключатель штатно сработал, включив лампочку/вентилятор/что-то еще.

Единственная разница в том, что через какое-то время лампочка потухнет сама. А как долго схема будет включена, зависит уже от значения конденсатора и резистора. Пока конденсатор разряжается, на базе транзистора напряжение падает вместе с силой проходящего тока.

Схема удобна тем, что в ней можно заменять кондер и сопротивление, чтобы играть с временной задержкой. Однако резистор лучше использовать в значении от 100 Ом и до 5 КилоОм.

Иначе транзистору, в нашем случае КТ815Б, может не хватить напряжения. Такое взаимодействие конденсатора и резистора в радиоэлектронике называется RC-цепь.

Микрофонный усилитель на двух транзисторах

Начинающим радиолюбителям

Cхемы электронных устройств

 Простая схема подходит для новичков радиолюбителей.

Данная схема собрана на двух высокочастотных транзисторах разной проводимости. Транзисторы подключены в схеме общий эмиттер — общий эмиттер. При снижении напряжения питания усилитель продолжает стабильно работать, благодаря сочетанию транзисторов разной структуры. 

Транзисторы можно заменить на аналоги — КТ3102, КТ3107 или можно использовать зарубежные аналоги например VT1 можно заменить BC307, BC308. 

Коэффициент усиления данного микрофонного усилителя будет не менее 200 в полосе частот от 50Гц до 20 кГц.

Дальше »

Принцип работы

Опишем, как работает диод. В основе его работы лежат свойства движения электронов и «дырок» под действием электрического поля. Данный прибор может находиться в двух состояниях:

  1. Открытое.
  2. Закрытое.

Графически этот полупроводниковый элемент можно представить в виде прямоугольника, который состоит из двух частей, разделённых линией. В одной части находятся положительно заряженные частицы — ионы, которые называют «дырками». Электрод, подключённый к этой части, называется анодом. Во второй части находятся отрицательно заряженные частицы, называемые электронами. Электрод, подключённый к этой части, называют катодом.

Для того чтобы добиться открытого состояния, необходимо соединить катод с отрицательным полюсом источника тока, а анод — с положительным. При таком соединении однополярные заряды будут отталкиваться друг от друга, и на границе p — n перехода будет возникать процесс, названный электронно-дырочной проводимостью. Другими словами, через диод в направлении от анода к катоду будет протекать ток.

Для закрытия диода потребуется поменять полюса питания источника постоянного тока. В таком случае частицы с разноименными зарядами будут притягиваться друг к другу и электрический ток протекать не будет.

В случае повышения напряжения источника питания выше допустимого в закрытом диоде произойдёт пробой, и величина обратного тока многократно увеличится. Такой прибор в дальнейшем непригоден для работы.

Диод Шоттки

Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так: