Кварцевые резонаторы

Содержание

Свойства кварцевого резонатора

Какие бывают счетчики электроэнергии Нева?

Во многих приборах резонансный радиокомпонент является незаменимым элементом. К положительным свойствам КР относятся:

  • Хорошая добротность превышает этот показатель аналогичных устройств. Добротность характеризует ширину резонанса, определяющую, во сколько раз запас энергии больше её потери за время изменения фазы на 1 радиан. Кварц достигает значений добротности в 104-106 раз больше, чем эквивалентный колебательный контур.
  • Невосприимчивость к перепадам температуры окружающей среды;
  • Каскадные фильтры на кварцевых радиодеталях позволяют обходиться без ручной настройки;
  • Большой срок службы;
  • Простота устройства прибора делает КР доступной деталью на радиорынке.

Пьезоэлектрики

На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.

Выглядит минерал кварц примерно вот так.


минерал кварц

Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.

Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.

пьезоэффект

Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества – пьезоэлектриками.

Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.

https://youtube.com/watch?v=b1kGfBikKTw

Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.

Кварцевый резонатор-структура, принцип работы, как проверить

Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.

В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.

Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.

Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера.

Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения.

Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.

В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.

Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 105 — 107. Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.

В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.

Принцип работы

Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин).

Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.

Проверка работоспособности

Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:

  1. Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
  2. Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.

В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ GEYER ELECTRONIC

Geyer Electronic выпускает кварцевые генераторы для тактирования цифровых схем. Кварцевый генератор — это кварцевый резонатор и схема автогенератора в одном корпусе. В последние годы все большую популярность приобретают кварцевые генераторы в миниатюрных корпусах для поверхностного монтажа. Их основные параметры сведены в таблицу 3.

Таблица 3. Кварцевые генераторы Geyer Electronic для поверхностного монтажа

Серия Диапазон доступ- ных частот,1 (MГц) Диапа- зоны рабочих темпера- тур2, (°С) Неста- биль- ность частоты, (ppm) Напря- жение питания (В) Емкость нагр., макс. (пФ) Пере- клю- чение выхода в третье состо- яние Размеры корпуса, (мм)
KXO-97 1,0…50,0 -20…70 -40…85 ±50 (±100)4 5±10% 50 + 7,0/5,08/ 1,8
50,1…80,0 15…25
80,1…100,0 30
KXO-V97 1,0…50,0 3,3±10%5 20
50,1…80,0 15
80,1…160,0
KXO-V99 1,0…181,0 3,3 15 5,0/3,2/ 1,0
KXO-V96 1,0…80 2,5/3,0/ 3,3 3,2/2,5/ 1,2
KXO-V95 1,0…70,0 2,5/2,8/ 3,0/3,3 2,5/2,0/ 082

1, 2 — см. сноски для таблицы 1 4 ±50 (±100) в скобках указано значение нестабильности для диапазона температур от -40 до 85°С 5 доступны с напряжениями питания 1,8/2,5/3,0 B (с допуском ±10%)

Большинство современных микроконтроллеров и цифровых процессоров уже содержат встроенную схему автогенератора. Остается только подключить внешний кварцевый резонатор. Однако для многих приложений удобнее именно кварцевый генератор. В этом случае устройство получается компактнее и надежнее, а разработчику остается только правильно выбрать подходящий генератор. Расчет, изготовление и настройка собственной схемы кварцевого генератора для частот более 30…40 МГц требует определенных профессиональных знаний, опыта и специального оборудования. Даже на частотах до 30 МГц генератор, собранный на дискретных компонентах, часто запускается не на той частоте. Применение готового кварцевого генератора всегда гарантирует стабильный результат при меньшей занимаемой площади на печатной плате. Большинство серий кварцевых генераторов Geyer Electronic имеют вход для отключения выхода (перевода в третье состояние с большим выходным сопротивлением). Кварцевые генераторы широко применяют в портативных радиостанциях, в качестве опорных генераторов в GPS- или ГЛОНАСС-навигаторах, в системах точного измерения времени.

Компания также выпускает следующие типы кварцевых генераторов:

  • кварцевые генераторы, управляемые напряжением (VCXO- Voltage Controlled Crystal Oscillator). Частоту такого генератора в определенных пределах можно изменить, подавая управляющее напряжение на соответствующий вход;
  • термокомпенсированные кварцевые генераторы (TCXO- Temperature Compensated Crystal Oscillator). Эти генераторы имеют высокую температурную стабильность благодаря аналоговому или цифровому методу компенсации зависимости частоты от температуры. Термокомпенсированные кварцевые генераторы применяются в устройствах, где требуется быстрый выход на рабочий режим и повышенная стабильность частоты (радиолокационные станции, опорные генераторы мобильных и переносных радиопередающих устройств и т.п.);
  • термокомпенсированные кварцевые генераторы, управляемые напряжением (VCTCXO- Voltage Controlled Temperature Compensated Crystal Oscillator). Возможность корректировки частоты внешним управляющим напряжением позволяет при необходимости еще больше повысить стабильность генерируемой частоты. Генераторы, управляемые напряжением применяются в системах фазовой автоматической подстройки частоты (ФАПЧ), частотной модуляции (ЧМ), импульсно-кодовой модуляции (ИКМ).

Для многих разработчиков могут представлять интерес керамические резонаторы Geyer Electronic серий KX-ZTT, KX-ZTA, KX-XTB.

С помощью рисунка 3 можно легко сравнить габаритные размеры разных серий кварцевых резонаторов, генераторов и керамических резонаторов Geyer Electronic.

Параметры кварцевых резонаторов

Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.

Будет интересно Дроссели в электрике: что это и где используются?

Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.


Параметры кварцевых резонаторов.

Температурная нестабильность частоты

Относительное отклонение рабочей частоты резонатора от базовой частоты. Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов. Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.

Режим работы резонатора (номер гармоники)

Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).

https://youtube.com/watch?v=spv1QUin3Rg

Виды

Резонаторы или дополнительные глушители классифицируют в зависимости от того, на двигателях какого типа они используются.

Потому различаются 2 основных вида устройств.

  1. Предназначенные для установки на двухтактные двигатели. Если транспортное средство оснащается подобным мотором, что в наше время встречается не так часто, то резонатор становится обязательным элементом компоновки выхлопной системы. Если резонатор будет отсутствовать, это моментально приведёт к увеличению количества потребляемого топлива. Изменится работа мотора в худшую сторону, снизится скорость и мощность. Это обусловлено тем, что удаляться будет не только отработанный выхлопной газ, но также и не до конца сгоревшее топливо. Отсюда падение скорости параллельно с увеличением расхода топлива.
  2. Резонаторы, устанавливаемые на четырёхтактные силовые установки. В случае с такими двигателями резонатор может сыграть не на пользу автомобилю, а создать определённые дополнительные проблемы. Демонтаж позволяет увеличивать уровень мощности двигателя примерно на 15%. Опытные автомобилисты считают, что на четырёхтактных моторах резонатор только мешает нормальной работе двигателя. Да, если его убрать, мощность действительно повысится. Но одновременно ухудшится экологичность транспортного средства, выхлоп начнёт загрязнять окружающую среду. Потому на 4-тактных моторах всё равно стоят резонаторы, позволяющие достичь требуемых экологических норм.

Есть ещё одна дополнительная классификация, которая различает резонаторы по их конструктивным особенностям.

На некоторые автомобили устанавливаются стандартные элементы моноблочного типа. Но постепенно практически все переходят на комбинированные устройства.

Второй тип резонаторов состоит из двух основных частей. Это классическая конструкция с трубой и перегородками, а также камера, заполненная специальными материалами, обладающими свойствами шумопоглощения. Зачастую в конструкциях используют материалы на основе базальтового волокна.

Комбинированные устройства являются более эффективными, современными и полезными в работе автомобильных двигателей и выхлопных систем. Потому на большинстве автотранспортных средств встречаются именно такие типы резонаторов.

Малые глушители или резонаторы глушителя разделяют по их размерам. Различают следующие подкатегории:

  • короткие;
  • средние;
  • длинные.

Ещё иногда классифицируют резонаторы в зависимости от их объёма. Это полезный способ классификации, поскольку во многом именно от объёма зависит, насколько эффективным окажется резонатор в конструкции автомобильной выхлопной системы. Если будет наблюдаться дефицит объёма в резонаторе, то в момент резкого нажатия водителем на педаль газа уровень шума окажется крайне высоким. Кому-то этот звук нравится, а потому специально устанавливаются резонаторы. Но из соображений безопасности системы выхлопа, а также из уважения к окружающим людям, лучше устанавливать устройств с достаточным рабочим объёмом.

Резонаторы или малые глушители изготавливаются из различных материалов. Наиболее бюджетные конструкции создают на основе алюминированной стали. Хотя в действительности это самая простая сталь, поверх которой наносится небольшой слой алюминия. Выглядят, как полноценно алюминиевые, но по факту не способны выдерживать значительные нагрузки. Требуют более частой замены. Слой алюминия только временно предотвращает образование коррозии на устройстве.

Резонатор глушителя автомобиля

Если автомобилист хочет получить действительно качественный, долговечный и эффективный резонатор, когда стандартный заводской элемент не устраивает или износился, оптимально выбирать конструкции на основе нержавеющей стали с двойным корпусом.

Выхлопная система постоянно подвергается сильным нагрузкам в виде высокой температуры. В результате периодически происходят сбои в нормальной работе всего автомобиля. Чтобы поломка резонатора или иного компонента не стала неожиданностью для автовладельца, настоятельно рекомендуется проводить профилактическую проверку и диагностику работоспособности узла. Заметив первичные признаки неисправностей, можно своевременно принять меры, провести ремонтно-восстановительные работы или просто полностью заменить вышедший из строя резонатор.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор

из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Кварцевый резонатор это кристаллический электронный прибор, поддерживающий резонансные колебания на заданной частоте. Кварцевый резонатор обладает высокой стабильностью и точность. Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных ниже схем для проверки.

Здесь транзистор VT1 используется в роли генератора, а его частоту определяет проверяемый кварцевый резонатор. При поступлении питания на схему, генератор начинает генерировать импульсы с частотой его основного резонанса. Импульсная последовательность проходит через конденсатор С3, который отфильтровывает постоянную составляющую и поступает на аналоговый частотомер построенный на детекторных диодах VD1, VD2 и пассивных элементах С4, R3 и микроамперметре. В зависимости от частоты прямо пропорционально меняется напряжение на конденсаторе С4, то есть чем выше частота резонанса кварца, тем выше напряжение. Данным пробником можно не только проверить работу кварцевого резонатора, но и косвенно определить частоту его резонанса. С помощью этой схемы можно проверить кварцевые резонаторы с частотой от 3 до 10 мГц.

Если мы захотим более точно определить резонансную частоту кварцевого резонатора, необходимо подключить к выходу генератора частотомер или осциллограф. Он позволяет рассчитать частоту с помощью фигур Лиссажу. Однако не следует забывать, что кварц может возбудится как на основной частоте, так и на гармониках.

Проверка сразу двух кварцевых резонаторов

Генератор Пирса

Другая распространенная конструкция кварцевого генератора — это модель Пирса. Генератор Пирса очень похож по конструкции на предыдущий генератор Колпитца и хорошо подходит для реализации схем кварцевого генератора, использующих кристалл как часть его цепи обратной связи.

Генератор Пирса — это, прежде всего, последовательный резонансно настроенный контур (в отличие от параллельного резонансного контура генератора Колпитца), который использует JFET для своего основного усилительного устройства, поскольку полевые транзисторы обеспечивают очень высокие входные импедансы с кристаллом, подключенным между стоком и затвором через конденсатор C1, так как показано ниже.

В этой простой схеме кристалл определяет частоту колебаний и работает на своей последовательной резонансной частоте, что дает путь с низким импедансом между выходом и входом. При резонансе наблюдается сдвиг фазы на 180 o , что делает обратную связь положительной. Амплитуда выходной синусоидальной волны ограничена максимальным диапазоном напряжения на выводе стока.

Резистор R1 управляет величиной обратной связи и возбуждением кристалла, в то время как напряжение на радиочастотном дросселе RFC меняется в течение каждого цикла. Большинство цифровых часов и таймеров используют генератор Пирса в той или иной форме, поскольку он может быть реализован с использованием минимума компонентов.

Наряду с использованием транзисторов и полевых транзисторов, мы также можем создать простой базовый параллельный резонансный кварцевый генератор, аналогичный по работе генератору Пирса, с использованием КМОП-инвертора в качестве элемента усиления. Основной кварцевый генератор состоит из одного инвертирующего логического элемента триггера Шмитта, такого как TTL 74HC19 или CMOS 40106, 4049, индуктивного кристалла и двух конденсаторов. Эти два конденсатора определяют величину емкости нагрузки кристаллов. Последовательный резистор помогает ограничить ток возбуждения в кристалле, а также изолирует выход инвертора от комплексного сопротивления, образованного конденсаторно-кристаллической сетью.

Свойства кварцевого резонатора

Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.

Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:

  • хорошая добротность, значения которой – 104-106 – превышают параметры ранее использовавшихся аналогов (имеют добротность 300);
  • небольшие габариты, которые могут измеряться долями миллиметра;
  • устойчивость к температуре, ее колебаниям;
  • долгий срок службы;
  • простота изготовления;
  • возможность построения каскадных фильтров высокого качества без использования ручной настройки.

Кварцевые резонаторы имеют и недостатки:

  • внешние элементы позволяют подстраивать частоту в узком диапазоне;
  • обладают хрупкой конструкцией;
  • не переносят чрезмерного нагрева.

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Как проверить кварцевый резонатор

Резонатор – довольно хрупкий прибор. При резком динамическом воздействии на корпус радиоэлектронного устройства КР может выйти из строя. Это скажется на работе всего аппарата. В этой ситуации мастер должен проверить работу кварцевого резонатора. Делают проверку с помощью тестера, схема которого состоит из транзистора КТ3102, пяти конденсаторов и двух резисторов. Собрать такой тестер даже для рядового радиолюбителя не составит особых трудностей. Как это сделать, видно на рисунке.


Сборка тестера

Выводы резонатора подключают между отрицательным выходом и базой транзистора через защитный конденсатор. По частотомеру определяют величину резонанса. Дополнительно соединяют его вход и выход через конденсатор (частомер). Всю схему запитывают постоянным током напряжением 9 вольт. Если прибор исправен, то на эмиттере транзистора возникает переменное напряжение. При этом частоты тока и прибора совпадают.

Резонатор считают неисправным, если частомер не выдаёт никаких показаний, либо показания отличаются от номинальной характеристики. Повреждённую деталь заменяют новым прибором.

При настройке контуров присутствие ёмкости С1 в тестере обязательно. При проверке КР в схеме контроллера можно обойтись без этой детали.

Обратите внимание! Указанный тестер работает в диапазоне частот 15-20 МГц. Для других частотных интервалов собирают устройства на микросхемах

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — и тогда работа кварцевого резонатора будет меньше беспокоить.

Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.

В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.

Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера. Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения. Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.

В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.

Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 10 5 — 10 7 . Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.

К числу минусов относят лишь узость диапазона сонастройки имеющейся частоты с частотой внешних элементов.

В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.