Примеры использования переменного и постоянного тока
Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:
- Аккумулятор сотового телефона.
- Батарейка любого типа.
- Аккумулятор питания ноутбуков.
В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.
Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.
Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:
- Действующее значение напряжения — вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
- К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
- Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.
Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.
Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.
Представить жилище современного человека без электрических розеток невозможно. И поэтому многие хотят знать больше о силе, несущей цивилизации тепло и свет, заставляющей работать все наши электроприборы. И начинают с вопроса: какой ток в нашей розетке, постоянный или переменный? И какой из них лучше? Чтобы ответить на вопрос, какой ток в розетке и чем обусловлен этот выбор, выясним, чем они отличаются.
Передача электрического тока на дальние расстояния
Итак, электрический ток мы получили. Теперь надо как-то передать его на дальние расстояния, не забывая про закон Джоуля-Ленца: Q=I2Rt . То есть нам надо каким-то чудом уменьшить силу тока, которая будет течь по проводам, так как в основном из-за нее происходят большие потери.
Для этих целей идеально подойдет трансформатор, но не простой, а трехфазный. Здесь используется замечательное свойство трансформатора: если повышаем напряжение, то понижаем силу тока, и наоборот, понижаем напряжение, увеличиваем силу тока. Поэтому, для того, чтобы передать полученную электроэнергию на дальние расстояния, нам нужно увеличить в несколько раз напряжение, тем самым мы в это же число раз уменьшим силу тока. Ниже на рисунке схема передачи электроэнергии от генератора ГЭС и до конечного потребителя, то есть для заводов, для электротранспорта и для нас с вами.
Передача электроэнергии от генератора до конечного потребителя
С ГЭС напряжение повышают до нескольких киловольт, чаще всего до 110 кВ. Все это достигается с помощью трехфазного высоковольтного повышающего трансформатора (2).
Трехфазный высоковольтный трансформатор
Далее высоковольтное напряжение идет по высоковольтной линии (3) и доходит до какого-либо города, либо райцентра.
Высоковольтная линия передачи электроэнергии
В каждом райцентре либо городе есть своя подстанция, где имеется уже свой высоковольтный понижающий трансформатор (4), который преобразует напряжение 110 кВ в 10 кВ, либо в 6 кВ (5).
Почему нельзя было сразу тянуть провода с генератора? Зачем надо было повышать, а потом снова понижать напряжение? Все опять же из за закона Джоуля-Ленца. Так как ГЭС находится на очень большом расстоянии от потребителей электроэнергии, приходится повышать напряжение, чтобы минимизировать потери на нагрев проводов. Как мы уже говорили, трансформатор повышает напряжение, но при этом уменьшает во столько же раз силу тока, поэтому потери в проводах на дальние расстояния сокращаются в разы, исходя из формулы Джоуля-Ленца Q=I2Rt.
Потом уже с подстанции напряжение расходится по трансформаторным “будкам”, которые можно уже заметить в каждом районе.
Трансформатор 6 кВ в 380 В
От этих “будок” выходит после преобразования приблизительно 380 Вольт. Но здесь есть один нюанс. Везде используется три провода, а к нам в дома заходят чаще всего два провода. В чем же дело? А дело как раз в том, что есть такое понятие как линейное и фазное напряжение. Линейное напряжение замеряется между 3 проводами, по которым идут 380 В. Они называются фазами. То есть грубо говоря – это те же самые провода, которые вышли с генератора еще где-нибудь на ГЭС. Но если взять любую из фаз и замерять напряжение относительно нулевого проводника, то есть относительно нуля, то у нас будет фазное напряжение 220 В. Получается, к нам в дом заходит ОДНА фаза и НОЛЬ. Куда деваются другие фазы? Они равномерно распределяются между жильцами дома или вашего района. То есть к вашему соседу может придти другая фаза, но тот же самый ноль.
Трехфазное линия передачи электроэнергии
Что такое действующее напряжение переменного тока?
Как я писал выше, одним из основных параметров переменного напряжения является амплитуда Um, однако использовать в расчётах данную величину не удобно, так как временной интервал в течение, которого значение напряжения u равно амплитудному Um ничтожно мал, по сравнению с периодом Т напряжения. Использовать мгновенное значение напряжения u, также не очень удобно, вследствие больших объёмов расчётов. Тогда возникает вопрос, какое значение переменного напряжения использовать при расчётах?
Для решения данного вопроса необходимо обратиться к энергии, которая выделяется под воздействием переменного напряжения, и сравнить её с энергией, которая выделяется под воздействием постоянного напряжения. Для решения данного вопроса обратимся к закону Джоуля – Ленца для постоянного напряжения
Для переменного напряжения мгновенное значение выделяемой энергии составит
где u – мгновенное значение напряжения
Тогда количество энергии за полный период от t = 0 до t1 = T составит
Приравняв выражения для количества энергии при переменном напряжении и постоянном напряжении и выразив полученное выражение через постоянное напряжение, получим действующее значение переменного напряжения
Получившееся выражение, позволяет вычислить действующее значение напряжение U для периодического переменного напряжения любой формы. Из выше изложенного можно сделать вывод, что действующее значение переменного напряжения называется такое постоянное напряжение, которое за такое же время и на таком же сопротивлении выделяет такую же энергию, которая выделяется данным переменным напряжением.
Действующее значение синусоидального напряжения.
Вычислим действующее значение синусоидального напряжения
Стоит отметить, все напряжения электротехнических устройств определяются, как правило, действующим значением напряжения.
Для определения амплитудного значения синусоидального напряжения необходимо преобразовать полученное выражение
Таким образом если в розетке у нас U = 230 В, следовательно, амплитудное значение данного напряжения
Действующее напряжение также имеет название эффективного напряжения и среднеквадратичного напряжения.
С действующим напряжением разобрались, теперь рассмотрим среднее значение напряжение.
Чем отличается переменный ток от постоянного
Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели.
Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания. В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов. Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения. Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.
То есть током называется движение носителей заряда в силу каких-либо причин. Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется. Но постоянный у нас в этом случае ток или переменный? Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении. Приблизительно постоянным можно считать ток разряда автомобильного аккумулятора. Строго говоря, напряжение здесь со временем падает, а потому даже при одной и той же нагрузке эффект разнится хронометрически. Как бы то ни было, источником постоянного тока можно считать адаптеры. В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.
В постоянном же количество данных частиц за одинаковые интервалы времени всегда равнозначно. Переменный ток постоянно изменяет свою силу, величину или направление. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в электрических сетях в зависимости от необходимых потребностей.
На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.
Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.
Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. Переменный ток (в отличие от постоянного) просто легче преобразовывать. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера. Но, да. Можно сказать, что направление тока в бытовой электросети меняется 100 раз в секунду. При частоте переменного тока 50 Гц, направление движения электронов меняется 100 раз в секунду.
Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Например, одним из распространенных видов переменного тока является ток, график закона которого выглядит в виде остриев пилы. Такой переменный ток называют пилообразным.
Вибратор Герца, эфир, электромагнитная волна
Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.
Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда – противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.
Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость)
В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот»
Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.
https://youtube.com/watch?v=EC4YIkYMBd8
Технические и экономические проблемы перехода на постоянный ток
Несмотря на то, что высоковольтная передача постоянного тока в настоящее время является проверенной и общепринятой технологией, по-прежнему существует ряд технических и экономических вопросов, в том числе о сетях с низким напряжением, на которые необходимо ответить:
- Сможет ли постоянный ток заменить переменный в широком спектре применений?
- Будут ли обе технологии продолжать существовать одновременно друг с другом?
- Как могло бы выглядеть подобное сосуществование?
- Какие технические и экономические препятствия необходимо преодолеть?
- Какие меры безопасности будут необходимы и одновременно эффективны?
- Какие изменения потребовал бы переход на постоянный ток в сети и как это повлияет на потребителей?
Преимущества такого «переключения» настолько значительны, что не может быть никаких сомнений в том, что приближается смена парадигмы. Обладая серьезным опытом в области разработки соединительных технологий, LAPP сразу же занимает здесь ведущее положение.
Компания является ассоциированным партнером в рамках проекта DC-INDUSTRIE, входящего в 6-ю программу исследований энергетики, которая проводится федеральным министерством экономики и энергетики Германии (BMWi). Исследовательский проект DC-INDUSTRIE посвящен вопросу о том, как можно создать сети постоянного тока с центральным процессом конверсии в качестве альтернативы энергосбережению, особенно при эксплуатации оборудования на производственных линиях, а также о том, как лучше использовать возобновляемые источники энергии.
Поведение конденсатора в цепи переменного тока
Если говорить строго, то через конденсатор не проходит ни постоянный, ни переменный ток, так как между обкладками находится изолятор, в котором свободные электрические заряды двигаться не могут.
Включение конденсатора в цепь постоянного тока равносильно разрыву этой цепи. Что же касается переменного тока, то он будет протекать по цепи, в которую включен конденсатор, благодаря периодическому заряду и разряду этого конденсатора. Действительно, когда происходит заряд конденсатора, то электрические заряды, например электроны, на одной обкладке накапливаются, а с другой обкладки уходят. При этом они, конечно, двигаются по соединительным проводам, подключенным к обкладкам конденсатора. Такое же движение зарядов, только в противоположном направлении, происходит и при разряде конденсатора.
Если включить конденсатор в цепь переменного тока, то он будет периодически заряжаться то в одной полярности, то в противоположной. Это значит, что электроны будут накапливаться то на одной, то на другой обкладке, и каждый раз при заряде и разряде свободные электроны будут двигаться по цепи, в которую включен конденсатор, не попадая, однако, в изолятор, включенный между обкладками. А поскольку под действием переменного напряжения в цепи конденсатора двигаются заряды, то мы считаем, что конденсатор пропускает переменный ток, хотя и в этом случае заряды не проходят через изолятор.
Конденсатор влияет на величину переменного тока в цепи, и поэтому (по аналогии с законом Ома) его часто рассматривают как сопротивление. Это так называемое емкостное сопротивление обозначается буквой хс и так же, как и обычное сопротивление, измеряется в омах. Величина хс зависит от частоты переменного тока и от емкости С конденсатора: с уменьшением емкости конденсатора, так же как и с уменьшением частоты переменного тока, емкостное сопротивление конденсатора увеличивается (рис. 80, 81, лист 87). Эту зависимость удобно записать в виде простой формулы:
Смысл этой формулы весьма прост: чем меньше емкость С, тем меньше зарядов будет двигаться к обкладкам при каждом заряде и разряде конденсатора; чем меньше частота переменного тока, тем реже будет заряжаться и разряжаться конденсатор. Отсюда следует, что с уменьшением f и С уменьшается ток в цепи, или, иными словами, растет сопротивление конденсатора.
Этот вывод имеет огромное практическое значение. Так, например, если нам понадобится включить в цепь конденсатор с очень маленьким емкостным сопротивлением, то емкость этого конденсатора нужно будет выбирать с учетом частоты переменного тока в цепи. Для высоких частот можно будет взять конденсатор небольшой емкости, а вот для низких частот емкость конденсатора придется взять большой. Это хорошо иллюстрируется простым примером. На частоте 100 кгц конденсатор емкостью 100 пф обладает емкостным сопротивлением хс=16 ком. При уменьшении частоты в 1000 раз, то есть на частоте 100 гц, сопротивление конденсатора возрастет в 1000 раз и станет равным 16 000 ком (16 Мом). Для того чтобы при уменьшении частоты емкостное сопротивление не изменилось, нужно увеличить емкость конденсатора. Сопротивление 16 ком на частоте 100 гц будет иметь конденсатор емкостью 100 000 пф (0,1 мкф).
Из приведенной выше формулы следует также, что уменьшение емкости конденсатора связи Ссв (лист 85) приведет к росту сопротивления этого конденсатора, а следовательно, к уменьшению тока в цепи антенны. Поэтому емкость Ссв нельзя брать слишком малой.
Сказанное можно пояснить еще иначе. Конденсатор связи и колебательный контур Lк Ск можно рассматривать как делитель напряжения, к которому приложена э. д. с, действующая между зажимами А («антенна») и З («земля»). Мы не будем пока говорить о том, чему равно сопротивление колебательного контура – даже без этого ясно: чем больше емкостное сопротивление конденсатора связи, тем меньшая часть э. д. с. будет действовать на нижней части делителя – на контуре и подключенной к нему цепи детектор – телефон.
Читать дальше – Трансформаторная связь
Классификация по роду тока и принципу действия
Как известно, существует два рода электрического тока – переменный и постоянный.
Исходя из этого, электрические машины также подразделяют по роду тока на два вида – машины электрические переменного тока и машины электрические постоянного тока.
Электрические машины переменного тока
Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).
Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Применяются в промышленных электроустановках (станки, краны, подъемные машины) и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.
- Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ.
- Коллекторные машины – используют их только в качестве электродвигателей. Это вызвано сложностью их конструкции и необходимостью тщательного ухода. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.
Электрические машины постоянного тока
Они работают практически во всех сферах промышленности и транспорта.
В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.
Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.
Электрические микромашины
Микромашины активно применяются в устройствах автоматических.
Их подразделяют на группы:
Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.
- Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
- Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
- Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
- Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
- Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
- Электромашинные усилители и преобразователи.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.
Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.
Что такое короткое замыкание по-простому?
Какие существуют виды источников электрического тока?
Способы вычисления потребления электроэнергии бытовыми приборами
Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления
Что такое фазное и линейное напряжение?
Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока
В розетке постоянный или переменный ток?
Виды тока.
Есть 2 вида тока — это постоянный и переменный.
- Постоянный ток — обладает определённым направлением передвижения заряженных частиц.
- Переменный ток — имеет свойство изменяться по направлению и величине.
Из генераторов электростанций поступает переменный ток. На трансформаторной станции он преобразуется в 380 вольт. Низковольтный участок подстанции выдает три фазы и нулевой провод, подключение потребителей происходит от одной из фаз и нулевого провода. В итоге в здание поступает переменный однофазный ток с напряжением 220 вольт. Электричество в жилой дом поступает на счетчик, а далее через автоматы на распределительные коробки в каждое помещение. В распределительных коробках проводка разводится по комнате для розеток и осветительных приборов.
Постоянный ток — используют: в аккумуляторных батареях, солнечные панели, термопары, в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, телевизионной аппаратуре.
Переменный ток — составляется около 90% от всей потребляемой электроэнергии, это связано с тем что его можно «транспортировать» на огромные расстояния, изменяя напряжение до нужных параметров.
Параметры домашней электрической сети.
Стандартное напряжение для домашних электросетей — 220 вольт, частота — 50 герц. Параметр частоты является неизменным, а вот напряжение в сети может быть отличаться, на него влияют: сетевые нагрузки, состояние оборудования, загруженность подстанции.
Токовая нагрузка.
Все розетки имеют допустимую токовую нагрузку, определить её можно по маркировке, к примеру обозначение «6A» указывает нам на максимальную силу тока в 6 ампер. У всех электроприборов есть технический паспорт, там обязательно указана потребляемая мощность. Не перегружайте розетки, это может привести к выходу оборудования из строя и пожару.
Методы измерения напряжения и тока.
Чтобы измерить показатели напряжения и тока нужно:
Индикатор напряжения — может быть:
- однополюсным — определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля.
- двухполюсным — показывает ток между фазами, а также между нулем и фазой.
Мультиметр — проводит измерения любого типа тока, присутствующего в розетке и проверяет уровень напряжения.
Разновидности прибора
Мультиметр (мультитестер) представляет собой прибор для замеров самых разных параметров электросети, а также других питающихся от нее элементов.
Устройство позволяет с высокой точностью установить такие характеристики сети, как напряжение, ток, сопротивление и целый ряд других данных. Мультитестер дает возможность также проверять транзисторы, выполнять «прозвон» кабелей и проводов, тестировать диоды и т.п.
С точки зрения исполнения самого прибора выделяют аналоговые и цифровые мультиметры. Приборы отличаются по функциональным характеристикам, точности работы, качеству изготовления, комплектации.
Аналоговые тестеры нередко именуют вольтметрами или амперметрами, так как такие приборы обычно настроены на выполнение 2-3 функций и не более того. Аналоговые устройства показывают результаты измерений обычной стрелкой на шкале. Такая техника довольно сложна в эксплуатации, требует определенного опыта. Новичок далеко не сразу разберется со всеми имеющимися шкалами, чтобы определить конечное значение электрических данных. К тому же, аналоговое оборудование не способно фиксировать стрелку на позиции, что затрудняет работу с ним.
Цифровое устройство выдает результаты замеров в электронном виде (на жидкокристаллический монитор). Прибор прост в эксплуатации и резко уменьшает участие человеческого фактора, а значит и ошибки в измерениях. Простота и точность показаний сделали цифровые устройства самыми популярными на рынке.
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Электрическое напряжение делят на два вида:
- постоянное (dc)
- переменное (ас)
Обозначение постоянного тока (—), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.
В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.
Помимо этого, у переменного электрического тока существует деление ещё на два вида:
- однофазный
- трёхфазный
Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.
А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.
Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.