Статья источники электрического тока

Содержание

Источники и потребители электрической энергии. Электрические цепи

Разделы: Технология

Цель урока:

Образовательная: повторить и обобщить знания по теме.

Развивающая:

  • формирование умений самостоятельно применять знания, полученные на уроках, при сборке электрических цепей.
  • развитие мышления, умения делать выводы, анализировать;

Воспитательная: привитие познавательного интереса к электротехнике, воспитание культуры труда, самостоятельности и творчества в коллективно-трудовой деятельности;

Оборудование:

  1. ПК и мультимедийный проектор. На ученических столах: источник тока (батарейка 4,5V), ключ, лампочка, соединительные провода, лист-задание
  2. Лабораторно-практическая работа «Монтаж электрических цепей».

На демонстрационном столе: монтажная планшетка, гальванические элементы, аккумулятор, генератор велосипедный, элекрофорная машина и бытовые приборы — (утюг, лампа настольная, электрочайник, электродрель, электрический звонок, гирлянда и др.)

Образец изделия: — Фонарик из пластиковых бутылок

Ход урока

I. Организационный момент (проверка отсутствующих и готовности класса к уроку).

Учитель: Здравствуйте ребята! Присаживайтесь.

II. Проверка знаний и умений.

На прошлом уроке мы изучали условные обозначения элементов электрических схем. Ребята, как вы думаете, для чего нужно знать эти условные обозначения?

Ответ:

(Чтобы составить электрическую схему и собрать электрическую цепь).

Правильно! Это и будет целью нашего урока, научиться по схемам, собирать простейшие электрические цепи

Поэтому сегодня от вас, ребята, потребуются внимание, настойчивость и культура труда в достижении этой цели

А сейчас, мы проверим ваши знания по графическому обозначению элементов электрических схем.

Задание 1

Выполнить условные обозначения, применяемые на схемах электрической цепи. Ученики с места задают поочерёдно вопросы двум отвечающим одноклассникам у доски. Ответ выполняется графическим обозначением с помощью мела на классной доске.

Перед вами находятся две кнопки звукового экзаменатора опережения ответа. Кто после заданного вопроса первым нажмет кнопку, имеет право на ответ. Если ответ не верный, то право ответа на вопрос переходит второму отвечающему.

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.


Химические источники тока

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.


Схема работы топливного элемента

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.


Аккумуляторный источник тока

Как найти напряжение источника

Под источником понимают элемент, питающий цепь электромагнитной энергией. Эта энергия потребляется пассивными элементами цепи – запасается в индуктивностях и емкостях и расходуется в активном сопротивлении. Примерами реальных источников электромагнитной энергии могут служить генераторы постоянных, синусоидальных и импульсных сигналов разнообразной формы, сигналы, получаемые от различных датчиков, антенн радиоприемных устройств, источники питания, сигналы, поступающие с выходов электронных устройств и т.д.

Для анализа цепей удобно вводить идеализированные источники двух видов: источник напряжения и источник тока, которые учитывают главные свойства реальных источников. При соответствующем дополнении идеализированных источников пассивными элементами можно передать все свойства реальных источников по отношению к их внешним выводам.

Источник напряжения. Подисточником напряжения понимают такой элемент с двумя выводами (полюсами), напряжение между которыми задано в виде некоторой функции времени независимо от тока, отдаваемого во внешнюю цепь. Зависимость напряжения от тока идеального источника напряжения показана на рис. 1.3. Такой идеализированный источник способен отдавать неограниченную мощность. Наиболее часто применяемые условные графические изображения источника напряжения показаны на том же рисунке, где принятая положительная полярность напряжения источника указывается либо стрелкой внутри кружочка, либо знаками “+”, “-”.

Реальные источники сигнала имеют внутренние сопротивления. К источнику напряжения внутреннее сопротивление подключается последовательно. На рис. 1.4 показаны вольтамперная характеристика и схема реального источника напряжения. Для реального источника выходное напряжение будет равно

Из формулы видно, что выходное напряжение реального источника тока зависит от тока нагрузки Iн. Чем больше ток нагрузки, тем больше падает напряжение на внутреннем сопротивлении источника, и меньшая часть напряжения U поступает на нагрузку (на выход). С другой стороны, чем больше внутреннее сопротивление Rвн при неизменном токе нагрузки, тем больше падает на нем напряжения, что ведет к уменьшению напряжения на выходе источника. Применительно к электронным схемам внутреннее сопротивление источника часто называют выходным сопротивлением.

В случае идеального источника напряжения, его внутреннее сопротивление равно 0 и напряжение на нагрузке не зависит от тока нагрузки. При этом ток нагрузки может возрастать до бесконечности, если сопротивление нагрузки будет стремиться к 0. В действительности невозможно построить идеальный источник напряжения во всем диапазоне изменения выходного тока. Однако, во многих случаях, для ограниченного диапазона изменения выходного тока некоторые источники можно рассматривать как идеальные.

Например, источник питания в диапазоне рабочих токов имеет очень малое внутреннее сопротивление, которым можно пренебречь, по сравнению с сопротивлением нагрузки. Или другой пример, выходное сопротивление операционного усилителя, охваченного отрицательной обратной связью, может достигать нескольких сотых долей Ома. Таким внутренним сопротивлением можно пренебречь и рассматривать выход операционного усилителя как идеальный источник напряжения в диапазоне допустимых выходных токов.

Стабилизатор с использованием ШИМ

Импульсный стабилизатор постоянного напряжения, который работает на основе ШИМ, кроме ключа и интегратора в своем составе имеет:

  1. генератор;
  2. операционный усилитель;
  3. модулятор

Работа ключа напрямую зависит от уровня напряжения на входе и скважности импульсов. Влияние на последнюю характеристику осуществляют частота генератора и емкость интегратора

Когда ключ размыкается, начинается процесс отдачи электричества из интегратора в нагрузку.

Принципиальная схема стабилизатора ШИМ

При этом операционный усилитель сравнивает уровни выходного напряжения и напряжения сравнения, определяет разницу и передает необходимую величину усиления на модулятор. Этот модулятор осуществляет преобразование импульсов, которые выдает генератор, на прямоугольные импульсы.

Конечные импульсы характеризуются таким же отклонением скважности, которое пропорционально разности выходного напряжения и напряжения сравнения. Именно эти импульсы и определяют поведение ключа

То есть при определенной скважности ключ может замыкаться, или размыкаться. Получается, что главную роль в этих стабилизаторах играют импульсы

Собственно от этого и пошло название этих устройств.

Трехфазные электрические цепи


Трехфазная цепь в рабочем режиме Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.

Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.

Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Классификация по роду тока и принципу действия

Как известно, существует два рода электрического тока – переменный и постоянный.

Исходя из этого, электрические машины также подразделяют по роду тока на два вида – машины электрические переменного  тока и машины электрические постоянного тока.

Электрические машины переменного тока

Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).

Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Применяются в промышленных электроустановках (станки, краны, подъемные машины) и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.

  •  Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ. 
  • Коллекторные машины – используют их только в качестве электродвигателей. Это вызвано сложностью их конструкции и необходимостью тщательного ухода. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.

Электрические машины постоянного тока

Они работают практически во всех сферах промышленности и транспорта. 

В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.

Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.

Электрические микромашины

Микромашины активно применяются в устройствах автоматических.

Их подразделяют на группы:

Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.

  •  Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
  • Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
  • Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
  • Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
  • Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
  • Электромашинные усилители и преобразователи.

Законы, действующие в электрических цепях


На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».

Принцип действия

Подключаем трансформатор тока

Переменный – это ток, у которого величина и направление меняются во временном диапазоне. Основным принципом действия генераторов переменного тока является закон электромагнитной индукции – возникновение движения электронов в проводнике во время прохождения магнитного потока через его замкнутый контур.

Принцип действия генератора переменного (слева) и постоянного тока (справа)

Действие генераторов постоянного тока основано на законе Фарадея и проявлении ЭДС.

Когда к проводнику, имеющему внутри вращающийся постоянный магнит, подключить нагрузку, то по ней потечёт переменный ток. Это происходит из-за смены мест полюсов магнита. Для получения постоянного тока нужно эту нагрузку подключать с такой скоростью, с какой вращается магнит. Для этого предназначен в нём коллектор, который закрепляется на роторе и вращается с той же частотой. Постоянное напряжение с коллектора снимают графитные щётки. ЭДС падает до нуля, когда пластины коллектора переключаются, но не изменяет своей полярности, так как успевает подключиться к другому проводнику.

Чем отличается переменный ток от постоянного

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели.

Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания. В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов. Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения. Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

То есть током называется движение носителей заряда в силу каких-либо причин. Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется. Но постоянный у нас в этом случае ток или переменный? Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении. Приблизительно постоянным можно считать ток разряда автомобильного аккумулятора. Строго говоря, напряжение здесь со временем падает, а потому даже при одной и той же нагрузке эффект разнится хронометрически. Как бы то ни было, источником постоянного тока можно считать адаптеры. В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В постоянном же количество данных частиц за одинаковые интервалы времени всегда равнозначно. Переменный ток постоянно изменяет свою силу, величину или направление. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в электрических сетях в зависимости от необходимых потребностей.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. Переменный ток (в отличие от постоянного) просто легче преобразовывать. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера. Но, да. Можно сказать, что направление тока в бытовой электросети меняется 100 раз в секунду. При частоте переменного тока 50 Гц, направление движения электронов меняется 100 раз в секунду.

Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Например, одним из распространенных видов переменного тока является ток, график закона которого выглядит в виде остриев пилы. Такой переменный ток называют пилообразным.

Основы работы источника тока с двумя операционными усилителями

Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.

Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice

Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.

Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).

В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.

Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:

Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения

Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1

Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.

\(V_{вых,U1}\approx \left(R_{нагр}+R1\right)I_{вых}\)

Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.

Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.

Комментарии:

Метелкин

Статья хорошая. Нужно дополнить, что импульсный стабилизатор предназначен для слаботочки, т.е. подключить через него телевизор или комп никак не получится, только лампочку или кулер какой-нибудь.

Ромка

Кто знает схему стабилизатора для лампочки-экономки и выгодно ли его собирать самостоятельно? Насколько дешевле/дороже выходит, чем купить новую лампу?

Пашка

Какой конденсатор нужно устанавливать в узел накопления электроэнергии для стабилизатора?

Оставить комментарий Отменить ответ


Стабилизатор напряжения – как выбирать для котла отопления. Настенный стабилизатор напряжения не займет полезного пространства в доме

Назначение выводов и принцип работы

Упоминалось, что LM317 относится к классу линейных стабилизаторов. Это означает, что стабилизация выходного напряжения осуществляется за счёт перераспределения энергии между нагрузкой и регулирующим элементом.

Транзистор и нагрузка составляют делитель входного напряжения. Если заданное на нагрузке напряжение уменьшается (по причине изменения тока и т.п.), транзистор приоткрывается. Если увеличивается – закрывается, коэффициент деления изменяется и напряжение на нагрузке остается стабильным. Недостатки такой схемы известны:

  • необходимо, чтобы входное напряжение превышало выходное;
  • на регулирующем транзисторе рассеивается большая мощность;
  • КПД даже теоретически не может превышать отношение Uвых/Uвх.

Зато имеются серьезные плюсы (относительно импульсных схем):

  • относительно простая и недорогая микросхема;
  • требует минимальной внешней обвязки;
  • и главное достоинство – выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).

Стандартная схема включения микросхемы:

  • на вывод Input подается входное напряжение;
  • на вывод Output – выходное;
  • на Ajust – опорное напряжение, от которого зависит выходное.

Резисторы R1 и R2 задают выходное напряжение. Оно рассчитывается по формуле:

Uвых=1,25⋅ (1+R2/R1) +Iadj⋅R2.

Iadj является паразитным током вывода настройки, по данным изготовителя он может быть в пределах 5 мкА. Практика показывает, что он может достигать значений на порядок-два выше.