Что делает источник напряжения с током

Содержание

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.


Химические источники тока

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.


Схема работы топливного элемента

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.


Аккумуляторный источник тока

Классификация видов сварки по физическим признакам

Классификация процессов сварки по физическим признакам хоть не относится напрямую к теме статьи, но она косвенно связана с источниками питания. Поскольку именно благодаря им удается выполнить тот или иной вид сварки.

Существует три разновидности сварки по физическому признаку:

  • Термическая
  • Термомеханическая
  • Механическая

При термической сварке источник питания должен генерировать дугу, которая будет плавить металл только с помощью своей тепловой энергии. Дуговая сварка, плазменно-, электронно-, ионно-лучевая сварка, электрошлаковая, индукционная, газовая сварка — все это термические виды сварки.

Термомеханическая сварка предполагает не только использование тепловой энергии, но и применение давления. Эти параметры необходимы, например, для контактной сварки. А еще для диффузионной, дуго-, шлако-, индукционно-прессовой и печной сварки.

Классификация сварочных процессов ни обходится без механических видов сварки металлов. При таком типе сварки детали соединяются под действием давления и механической энергии. Это сварка взрывом, холодная сварка, сварка трением и т.д. Данный тип сварки не использует сварочную дугу и не нуждается в источнике питания.

Чем отличается переменный ток от постоянного

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели.

Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания. В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов. Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения. Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

То есть током называется движение носителей заряда в силу каких-либо причин. Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется. Но постоянный у нас в этом случае ток или переменный? Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении. Приблизительно постоянным можно считать ток разряда автомобильного аккумулятора. Строго говоря, напряжение здесь со временем падает, а потому даже при одной и той же нагрузке эффект разнится хронометрически. Как бы то ни было, источником постоянного тока можно считать адаптеры. В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В постоянном же количество данных частиц за одинаковые интервалы времени всегда равнозначно. Переменный ток постоянно изменяет свою силу, величину или направление. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в электрических сетях в зависимости от необходимых потребностей.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. Переменный ток (в отличие от постоянного) просто легче преобразовывать. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера. Но, да. Можно сказать, что направление тока в бытовой электросети меняется 100 раз в секунду. При частоте переменного тока 50 Гц, направление движения электронов меняется 100 раз в секунду.

Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Например, одним из распространенных видов переменного тока является ток, график закона которого выглядит в виде остриев пилы. Такой переменный ток называют пилообразным.

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.


Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.


Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Источники электрического тока, изобретение электромашины

Схема стабилизатора тока на полевом транзисторе

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент —  это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Рис. 5. Две проволоки из различных металлов могут создавать ток в цепи при нагревании

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

контекст

Аналогом источника напряжения в контексте анализа электрических сетей является двухполюсный источник питания , который подает определенный электрический ток — независимо от напряжения, приложенного к его клеммам. Любое расположение источников линейного напряжения и тока и резисторов в виде электрической цепи всегда может быть полностью описано снаружи как двухполюсное с использованием только одного источника напряжения с внутренним сопротивлением . Эта взаимосвязь также известна как теорема Тевенина и играет роль в анализе электрических цепей, поскольку позволяет свести сложные схемы к упрощенным эквивалентным схемам , которые затем становятся более доступными для анализа.

В эквивалентных схемах источник напряжения всегда рассматривается как независимый от силы тока. На самом деле такого поведения можно добиться только приблизительно; затем в эквивалентную принципиальную схему необходимо вставить дополнительные компоненты, чтобы лучше описать реальность . В простейшем случае для этого используется омическое внутреннее сопротивление , включенное последовательно с источником напряжения . В случае технически используемых источников напряжения, как правило, стараются поддерживать как можно более низкое внутреннее сопротивление.

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

Первым делом давайте замеряем напряжение на клеммах аккумулятора

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Основы работы источника тока с двумя операционными усилителями

Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.

Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice

Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.

Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).

В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.

Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:

Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения

Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1

Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.

\(V_{вых,U1}\approx \left(R_{нагр}+R1\right)I_{вых}\)

Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.

Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Что показывает мультиметр при выборе различных режимов работы?

Они располагаются вокруг круглого переключателя, с помощью которого можно устанавливать необходимый режим. На переключателе место контакта обозначено точкой или рельефным треугольничком. Обозначения разделены на сектора. Практически все современные мультиметры имеют подобную разбивку и круглый переключатель.

Сектор OFF. Если установить переключатель в это положение – прибор выключен. Есть и модели, которые автоматически выключаются через некоторое время. Это очень удобно, потому что я например во время работы его забываю выключать, да и не удобно когда меряешь, потом паяешь все время выключать его. Батареи хватает надолго.

2 и 8 – два сектора с обозначением V, этим символом обозначается напряжение в вольтах. Если просто символ V – то измеряется постоянное напряжение, если V, измеряется переменное напряжение. Стоящие рядом цифры показывают диапазон измеряемого напряжения. Причем постоянное измеряется от 200m (милливольт) до 1000 вольт, а переменное от 100 до 750 вольт.

3 и 4 – два сектора для измерения постоянного тока. Красным выделен всего один диапазон для измерения тока до 10 ампер. Остальные диапазоны составляют: от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер. В обычной жизни десяти ампер вполне хватает, при измерении силы тока мультиметр включается в цепь путем подключения щупов в нужное гнездо, специально предназначенное для измерения силы тока. Как-то раз я впервые попробовал измерить силу тока в розетке своим первой простенькой моделью тестера. Пришлось менять щупы на новые — штатные выгорели.

5 (пятый) сектор. Значок похож на Wi-Fi. Установка переключателя в этом положении позволяет проводить звуковую прозвонку цепи например нагревательного элемента.

6 (шестой) сектор – установка переключателя в данное положение проверяет исправность диодов. Проверка диодов — очень востребованная тема среди автомобилистов. Можно самому проверить исправность например диодного моста автомобильного генератора:

7 – символ Ω. Здесь измеряется сопротивление 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм. Так же очень востребованный режим. В любой электрической схеме больше всего элементов сопротивления. Бывает, что измерением сопротивления быстро находишь неисправность: