База знаний по трехмерному проектированию в pro/engineer, creo, solidworks, электронике на stm32

Содержание

Что такое транзистор?

Транзистор – электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если быть точнее, то транзистор позволяет регулировать силу электрического тока подобно тому, как водяной кран регулирует поток воды. Отсюда следуют две основные функции прибора в электрической цепи — это усилитель и переключатель.

Существует бесконечное множество разных типов транзисторов – от огромных усилителей высокой мощности размером с кулак, до миниатюрных переключателей на кристалле процессора размером в считанные десятки нанометров (в одном метре 109 нанометров).

Бесконтактные выключатели 73

Бесконтактные выключатели – коммутационные устройства, приводимые в действие при помощи внешнего объекта без механического контакта.

Коммутация нагрузки осуществляется с помощью полупроводниковых элементов. Благодаря этому обеспечивается высокая надёжность работы бесконтактных выключателей.

В системах управления БВ обычно выступают в качестве датчиков обратной связи, оповещая оператора о завершении выполнения конкретными элементами оборудования перемещения.

Наиболее простые бесконтактные выключатели состоят из трёх частей: чувствительного элемента, схемы преобразования и коммутационного элемента, который подключается к схеме управления.

  • индуктивными;
  • ёмкостными;
  • ультразвуковыми;
  • оптическими.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Ижевск, Казань, Калуга, Кемерово, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Бесконтактные выключатели» вы можете купить оптом и в розницу.

Источник



Работа транзистора с нагрузкой

⇐ ПредыдущаяСтр 6 из 8Следующая ⇒

При работе транзистора в электронных схемах, в цепи его электродов подключают не только источники постоянных смещений, но и источники сигналов, а также элементы нагрузки. На рис. 16 представлена схема включения транзистора с нагрузкой и источником питания.

Рис. 16

Для коллекторной цепи справедливо .

Это уравнение определяет положение линии нагрузки.

Простейший случай – работа транзистора в качестве усилителя низкочастотного синусоидального сигнала малой амплитуды. Под термином «малого сигнала» понимают такой сигнал, амплитуда которого настолько мала, что в пределах изменения напряжения сигнала статические характеристики можно считать линейными, а сам транзистор рассматривать как линейный четырехполюсник.

Для работы транзистора в качестве усилителя необходимо обеспечить определенные токи и напряжения на полюсах транзистора, т.е. задать рабочую точку. Рабочая точка определяется смещениями на эмиттерном и коллекторном переходах, которые задаются источниками напряжения ЕК и UБЭО.

Рассмотрим связь входных и выходных характеристик транзистора включенного по схеме с ОЭ (рис. 17).

При усилении слабых сигналов рабочая точка должна находиться в активной области статических характеристик.

Рабочая точка Б′ на выходных характеристиках определяется с помощью входной характеристики.

Принцип работы усилителя заключается в следующем. При воздействии сигнала Uвх напряжение ЕБЭО суммируется с напряжением сигнала и рабочая точка Б перемещается между А и С на входной характеристики транзистора. Когда амплитуда сигнала мала, участок АС можно заменить отрезком прямой. Перемещение рабочей точки Б вызывает изменение тока базы IБ. Поскольку IК ≈ βIБ, то изменением тока IБ приводит к соответствующим изменениям тока коллектора IК. Протекая через RК ток IК создает на нем падение напряжения Uвых, которое является усиленной копией входного сигнала Uвх.

Рис. 17

Отметим, что Uвых и Uвх сдвинуты по фазе на 1800.

Важнейшими факторами, определяющими усилительные свойства транзисторов являются:

— возможность эффективного управления выходным током IК за счет входного сигнала (обеспечивается прямым смещением эмиттерного перехода),

— минимальная реакция выходной цепи (обеспечивается обратным смещением коллекторного перехода) (слабая зависимость IК от UКБ, т.к. коллекторный переход смещен обратно).

На выходных характеристиках можно выделить ряд зон, характеризующие режимы работы транзистора. Активная область ограничена областью насыщения (I) и отсечки (II), в которых транзистор теряет усилительные свойства, превышение UКдоп (III) или PКдоп (IV) выводит транзистор из строя, а превышением IКдоп ухудшает усилительные свойства вследствие падения β (V).

⇐ Предыдущая6Следующая ⇒

Рекомендуемые страницы:

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Общая информация о транзисторах

Устройства подразделяют на биполярные, полевые, комбинированные. Основой модулей берут полупроводник из германия, химического неметалла кремния, соединения мышьяка и галлия. Ведущее место отводят биполярным моделям, но первоначально ставку делали на полярные.

Электрический ток образуется зарядными носителями, а границы переключения определяются силой сигнала:

  • малый — сильный импульс;
  • открытое — закрытое положение.

По скорости передачи энергии различают транзисторы:

  • маломощные — до 0,1 Вт;
  • средние — 0,1 – 1,0 Вт;
  • мощные — свыше 1 Вт.

Разбираетесь в транзисторах?

Да
26.09%

Нет
33.33%

Пытаюсь разобраться
40.58%

Проголосовало: 69

Устройство

Прибор может быть заключен в металлическом или пластмассовом корпусе. В первом случае изоляторы для выводов делают из керамики или стекла. В пластиковых коробках ставят теплоотвод из металла для установки модуля на внешний радиатор.

Вместе с полупроводником конструкция содержит:

  • стальные выводы;
  • элементы-изоляторы;
  • корпус.

По конструкции приборы делят на виды:

  • дискретные — корпусные и бескорпусные для отдельного монтажа, установки на радиатор, в паечных автоматизированных системах;
  • в структуре интегральных микросхем.

Строение позволяет получать разные виды генераторов для преобразования переменного тока из постоянного.

Применение

Сам транзистор не может усиливать мощность источника питания, но является главным элементом усилительной системы. Он помогает управлять мощностью на выходе, во много раз превышающую показатель управления. Его включают в разрыв между нагрузкой и подающим источником питания, при этом сопротивление поддается быстрому измерению.

Сферы применения:

  • Усилительные (УНЧ) схемы. Используют биполярные и полевые типы, устройства работают в ключевом регламенте регенераторов цифровых импульсов.
  • Системы усиления высокой частоты (УВЧ). Транзисторы ставят на входных контурах приемников Р.Т.А.
  • В качестве генераторов импульсов. Используют для возбуждения прямоугольных (ключевой режим) и произвольных сигналов (линейный регламент).
  • Их также используют в электропереключательных и усиливающих каскадах в виде активных приборов.

Базовый принцип работы

Полупроводниковый транзистор подключают к выводам одноименного вольтажа к базе и эмиттеру, при этом p соединяют с положительным, а n — с отрицательным электродом. В результате между ними появляется ток, а число зарядных носителей в базе зависит от величины напряжения. Ток, идущий к базе, именуют управляющим.

Особенности работы:

  • если к коллектору подать обратное напряжение, между ним и эмиттером пойдет ток из-за разницы потенциалов;
  • повышение объема зарядных носителей приведет к усилению тока;
  • небольшой рост напряжения значительно усиливает ток, что используют при создании усилителей;
  • если на эмиттер подают вольтаж, противоположный по знаку, образование тока останавливается, а транзистор становится в закрытое положение.

Обозначение

Условное позиционирование NPN и PNP транзисторов отличаются, при этом они отражают структуру и принцип работы модуля в электрическом контуре.

Стрелку ставят между базой и эмиттером для показа курса управляющего электротока;

  • у NPN транзисторов указатель сориентирован к эмиттеру от базы, расположение показывает, что в активной фазе электроны движутся в этом направлении;
  • у PNP разновидности стрелка стоит в направлении базы от эмиттера, что говорит о курсе управляющего электротока.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Как работает транзистор (картинка с анимацией — видео)

Итак, теперь непосредственно о насущном. То есть о том, ради чего мы собственно и начали эту статью.

Самое сложное, что нам придется вам объяснить, так это то, что как раз и скрыто от глаз человека. Ведь движение тока в проводнике, в различного рода проводимости кристаллах, не посмотришь и не увидишь. Именно поэтому необходимо иметь большую фантазию и очень наглядное пособие, чтобы довести до вас принцип работы транзистора. Есть и еще одно «но». Человек всегда привык строить какие-то эквивалентные системы, если непосредственно изучаемая система не дает ему полного представления, а самое главное наглядного примера о том, как же все-таки все устроено. Так и в нашем случае, взгляните на картинку…

Работа транзистора представлена в виде канала с управляемой средой, даже здесь два канала. В качестве каналов выступают контакты транзистора, а управляемой средой является ток. Управляя запорным клапаном на базе или затворе (маленький канал) мы тем самым открываем и большой канал, между эмиттером и коллектором или стоком и истоком. Именно этот большой канал и является нашей целью управления. Открывая маленький канал, мы открываем и большой! Вот главное правило работы транзистора. По-другому не бывает, по крайней мере, в нормальных режимах работы транзистора без пробоев. Управляющий клапан на базе, то есть малый канал открывается первым, тем самым провоцируя и открывание большого канала. Не знаем, нужны ли вам другие описания почему именно так? Если кратко, то потому что есть зоны запирания, есть сопротивления этих зон и изменения сопротивления в зависимости от потенциала, подаваемого на них. Конечно это не описывает особенностей работы транзистора полностью и подробно, но об этом мы вам и не обещали рассказать. Самое главное было рассказать о принципе срабатывания и показать это на наглядной картинке, что собственно мы и выполнили. Принцип работы в этом случае действителен для всех видов транзисторов о которых, мы упоминали в нашем предыдущем абзаце. А также, для того чтобы закрепить ваше визуально- ассоциативное мышление с реальной невидимой действительностью необходимо взглянуть и на нижний правый угол картинки. На нем видно как в зависимости от пропуска тока, через контакты транзистора будут происходить и коммутации вокруг его выводов.

Практические схемы включения датчиков

Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам. Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Устройство PNP транзистора

Конструкция PNP-транзистора показана на рисунке ниже. Эмиттер-база соединены в прямом смещении, а коллектор-база соединены в обратном смещении. Эмиттер, который подключен в прямом смещении, притягивает электроны к базе и, следовательно, создается ток, протекающий по пути от эмиттера к коллектору.

База транзистора всегда остается положительной по отношению к коллектору, так что дырки не могут «мигрировать» от коллектора к базе. И переход база-эмиттер поддерживает ток, благодаря чему дырки из области эмиттера входят в базу, а затем в область коллектора, пересекая область истощения.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра

Так проще запомнить, и понимать показания на экране мультиметра.

https://youtube.com/watch?v=asjlUxG09Iw

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

https://youtube.com/watch?v=rba4b4f2FfU

Схема ключа на биполярном транзисторе.

Вот такая вот несложная, но безумно полезная схема! Будем разбираться, как она работает.

Пусть нагрузка у нас потребляет ток 100 мА при 12 В. Если на входе у нас ничего нету, то потенциал базы равен потенциалу эмиттера и равен нулю. При таком раскладе у нас диод база-эмиттер закрыт и, следовательно, тока на выходе тоже нет. Транзистор тут находится в режиме отсечки (это значит, что оба перехода – база-коллектор и база-эмиттер – закрыты).

Подаем на вход положительное напряжение (ну, например, с ножки контроллера) и сразу же начинается движуха Напряжение на базе составит около 0.6 В (диод база-эмиттер открыт) и в схеме начинает протекать ток базы. И к чему же это приведет? А вот к чему. Так как диод база-эмиттер открыт, а диод база-коллектор закрыт, то БТ находится в режиме усиления, а значит, через нагрузку потечет коллекторный ток. Соответственно, на нагрузке появится напряжение.

А это в свою очередь приведет к тому, что напряжение на коллекторе будет уменьшаться (смотрите сами, напряжение коллектора + напряжение на нагрузке в сумме должны составлять 12 В, если увеличивается одно из этих значений, второе уменьшается, чистая математика ). В итоге, когда ток коллектора увеличится до 100 мА, падение напряжения на нагрузке составит около 12 В (таковы параметры нагрузки у нас), и соответственно напряжение на коллекторе станет меньше, чем на базе. А это значит, что диод база-коллектор откроется и биполярный транзистор перейдет в режим насыщения (оба диода открыты), и дальнейшего роста тока не будет происходить.

Короче, пока на входе ничего нет – режим отсечки, подаем сигнал, транзистор, очень быстро минуя режим усиления, переходит в режим насыщения. В этом и заключается принцип работы биполярного транзистора в качестве ключа.

Есть тут, кстати, еще одна важная фишка. Пусть, к примеру, резистор в цепи базы имеет сопротивление 1 КОм. Пусть на базу подается 10 В. Тогда на этом резисторе будет напряжение 9.4 В (10 В минус прямое напряжение диода база-эмиттер). Рассчитаем ток базы – делим 9.4 В на 1 КОм и получаем 9.4 мА. Пусть коэффициент усиления транзистора равен 50. Находим коллекторный ток: 9.4 мА * 50 = 470 мА. Вот такой получили расчет. Вроде бы все верно, но на самом деле все совсем не так и таким образом рассчитывать нельзя! Давайте разбираться, в чем тут ошибка.

Вспоминаем, что при значении тока коллектора 100 мА напряжение на нем становится мало относительно базы и биполярный транзистор насыщается. А значит дальнейшего роста тока быть не может! Таким образом, рассчитанные 470 мА на нагрузке мы не увидим, просто образуется так называемый избыток тока базы.

Итак, сегодня мы обсудили суть работы биполярного транзистора и его схему. Хотел я еще рассказать в этой статье про эмиттерный повторитель, но как то получилось объемно, а про повторитель надо поговорить обстоятельно и обширно, так что через пару дней в новой статье обязательно вернемся к биполярникам. До скорой встречи, следите за новостями

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Сначала о том, почему составной

Как вы уже поняли, транзистор изобрел инженер Дарлингтон, но в итоге это изобретение получило двойное имя. С одной стороны, это транзистор Дарлингтона, но с другой же, составной транзистор. Так почему же составной? Ведь когда мы говорили о видах, ни о каких составных речи не шло. Все просто, друзья мои. Дарлингтон решил использовать сразу 2 биполярных транзистора. Они были реализованы на одном кристалле, сделанном из кремния и там, естественно было 2 перехода. На Западе это изобретение привыкли называть транзистором Дарлингтона, а у нас его по-простому называют составным. Ну что, давайте узнаем о нем еще больше.

Принцип работы PNP транзистора

Переход эмиттер-база соединен в прямом смещении, благодаря чему эмиттер выталкивает дырки в базу. Дырки и составляют ток эмиттера. Когда носители перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и слаболегированная. Следовательно, только несколько дырок в сочетании с электронами движутся в направлении слоя пространственного заряда коллектора. Отсюда получается ток базы.

Область основания коллектора соединена в обратном смещении. Дырки, которые накапливаются вокруг области истощения p-n перехода при воздействии отрицательной полярности, собираются или притягиваются коллектором. Таким образом создается ток коллектора. Полный ток эмиттера протекает через ток коллектора IC.