§ 6. устройство увеличительных приборов

Содержание

Презентация на тему: » Цифровой микроскоп. Внешнее устройство микроскопа.» — Транскрипт:

1

Цифровой микроскоп

2

Внешнее устройство микроскопа

3

Микроскоп позволяет: Увеличивать изучаемые объекты, помещённые на предметный столик, в 10, 60 и 200 раз! Фотографировать рассматриваемый объект. Снимать видеофильмы (верхняя часть микроскопа снимается, и при поднесении к объекту, работает как веб-камера, давая 10-кратное увеличение). Изменять, сохранять, распечатывать, делать коллекции готовых фото- и видеоматериалов.

4

Использование цифрового микроскопа в образовательном процессе нацелено: для повышения уровня мотивации и познавательной деятельности; для проведения лабораторных и практических работ на уроках окружающего мира индивидуально, групповым методом и фронтально с использованием мультимедийного проектора, научно-исследовательской деятельности обучающихся; для организации исследовательской деятельности

5

При проведении лабораторных работ на уроках цифровой микроскоп оказывает значительную помощь. Он дает возможность: изучать исследуемый объект не одному ученику, а группе учащихся одновременно, так как информация выводится на монитор компьютера; использовать изображения объектов в качестве демонстрационных таблиц для объяснения темы или при опросе учащихся; изучать объект в динамике; создавать презентационные фото и видеоматериалы по изучаемой теме; использовать изображения объектов на бумажных носителях

Важно и то, что можно указать и подписать части препарата, собрав из этих кадров слайд-шоу. Сделать это можно как сразу на уроке, так и в процессе подготовки к нему

6

Лабораторные работы Предлагаю выполнить простые лабораторные работы в домашних условиях : 1) Изучение строения плесени. 2) Изучение строения цветка. 3) Изучение строения насекомых.

7

1. Строение плесени ЗаданиеРисунок 1. Подцепите иголкой немного плесени, которая выроста на хлебе или овощах 2. Положите ее на стеклянную прозрачную поверхность (например, на крышку от небольшой чашки из набора микроскопа). Капните на плесень каплю воды и накройте ее второй крышкой, слегка придавив 3. Положите готовый препарат на предметный столик микроскопа, подложив под него белую бумагу 4. Поверните барабан микроскопа на 10-ти кратное увеличение и рассмотрите грибницу плесневого гриба. Сделайте фотографию объекта 5. Поверните барабан микроскопа на 60-ти кратное увеличение и рассмотрите головки со спорами, которые высыпались при надавливании на плесень. Сделайте фотографию объекта

8

2. Строение цветка ЗаданиеРисунок 1.Оторвите цветок у цветущего комнатного растения. Рассмотрите его лепестки под микроскопом. Сделайте фото (10-кратное увеличение) 2. Рассмотрите органы размножения цветка: тычинки и пестики на 60-кратном увеличении. Сделайте фото. 3. Найдите пыльцу на 200-кратном увеличении. Сделайте фото пылинок

9

3. Строение насекомых ЗаданиеРисунок 1. Поймайте комнатную муху (или найдите спящую за окном). Положите ее на белую бумагу. Рассмотрите на разном увеличении. Найдите сложные глаза, они очень крупные (состоят из простых глазок, словно мозаика). Сделайте фото 2. Рассмотрите крыло мухи. Мухи, в отличие от других насекомых, имеют только два крыла! Крылья перепончатые, имеют жилки. Сделайте фото жилок 3. Вторая пара крыльев у мух превратилась в жужжальца (на фото – маленькие, блестящие), поэтому мухи сильно жужжат при полете. Найдите их на 60-кратном увеличении. Сделайте фото 4. Рассмотрите ноги у мухи, их 3 пары. Ноги имеют членистое строение (состоят из сегментов), поэтому насекомых относят к типу Членистоногие. На концах лапок – присоски, чтобы ходить по гладкой поверхности (по стеклу)

История создания микроскопа

Создание микроскопа имеет многовековую историю. Прибор прошел путь от простой трубки, в которую едва что-то можно было рассмотреть, до электронного устройства огромной мощности с большими увеличительными возможностями.

Один из первых микроскопов

Поскольку ранее наукой интересовались богатые люди, заказанные ими единичные экземпляры микроскопов украшались дорогими камнями и золотом, футляры для их хранения изготавливались из слоновой кости и ценного дерева.

В настоящее время существует множество микроскопов, они находят применение в разных сферах деятельности человека: медицине, промышленности, археологии, электронике и др.

Микроскоп Захария Янссена (XVI век)

Первый микроскоп создал нидерландский мастер по изготовлению очков Захарий Янссен. Это была обычная трубка с двумя линзами на концах. Настройку изображения выполняли, выдвигая трубку (тубус). Этот простой микроскоп стал основой для создания более сложных приборов.

Микроскоп Гука (середина XVII века)

Роберт Гук собрал очень удобную модель микроскопа: тубус можно было наклонять. Чтобы получить хорошее освещение, ученый придумал специальную масляную лампу и стеклянный шар, который наполнялся водой.

Микроскоп Галилея (начало XVII века)

Галилео Галилей доработал трубу Янссена, заменив одну из выпуклых линз на вогнутую. При выдвижении тубуса этот микроскоп служил еще и телескопом. Предположительно микроскоп Галилея изготовил мастер Джузеппе Кампаньи из дерева, картона и кожи и поставил на трехногую подставку из металла.

Микроскоп Левенгука (середина XVII века)

Изобретение Левенгука представляло собой две небольшие пластины, между которыми крепилась крошечная линза, а исследуемый объект помещался на иглу. Передвигать иглу можно было с помощью специального винта. Микроскоп мог увеличить изображение в 300 раз, что было немыслимо для той поры.

Микроскоп Иоганна ван Мушенбрука (конец XVII века)

Иоганн ван Мушенбрук создал необычный и простой в использовании микроскоп. Линза и держатель крепились с помощью подвижных соединений, названных «орехами Мушенбрука». Это придавало микроскопу большую гибкость.

Микроскоп Дреббеля (XVII век)

Микроскоп Дреббеля — это позолоченная труба, которая находилась в строго вертикальном положении. Работать за таким микроскопом было не очень удобно.

Микроскоп фирмы Шевалье (XIX век)

Наука шагнула далеко вперед. Фирма Шевалье стала производить микроскопы, объектив которых состоял уже не из одной простой, а из многих специально отшлифованных ахроматических линз. Это позволяло достигать большой мощности и передавать изображение без искажений и более четко.

Электронный микроскоп (XX век)

Появляются электронные микроскопы. Ученые заменили пучок света на поток микрочастиц — электронов. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, они управляют движением электронов с помощью магнитного поля.

USB-микроскоп (конец XX века)

USB-микроскоп — это небольшой цифровой прибор, который присоединяется к компьютеру через USB-порт. Вместо окуляра — маленькая веб-камера, которая посылает изображение прямо на монитор компьютера.

Принцип действия

В первом оптическом приборе система линз давала обратное изображение микрообъектов. Это позволяло разглядеть строение вещества и мельчайшие детали, которые подлежали изучению. Принцип действия светового микроскопа сегодня схож с той работой, которую осуществляет рефракторный телескоп. В этом приборе свет преломляется в момент прохождения через стеклянную часть.

Как же увеличивают современные световые микроскопы? После попадания в прибор пучка световых лучей происходит их преобразование в параллельный поток. Только затем идет преломление света в окуляре, благодаря чему и увеличивается изображение микроскопических объектов. Далее эта информация поступает в нужном для наблюдателя виде в его зрительный анализатор.

Популярные темы сообщений

  • Река Нил

    Нил это одна из величайших рек земного шара. Она является самой знаменитой рекой Африки. Она играет важную роль не только в транспорте, но и выполняет много функций эко системы Африки. Вокруг этой реки все не утихают споры,

  • Козерог созвездие

    Многим нравится смотреть в небо, ведь оно загадочное и очень интересное. Кроме этого если вы посмотрите на восток, то там можно разглядеть созвездие Козерога. Лучше всего данное созвездие можно разглядеть в летнее время, а если быть точным,

  • Мох

    Споровые небольшие растения, Бриофиты, у которых есть листья, стебли. Мхи, это высшие растения (организмы имеющие вегетативные органы, наиболее важные корень и побег), наиболее многочисленные, насчитывающие 10 тысяч видов,

Недостатки

Просвечивающий и растровый электронный микроскоп JEOL, изготовленный в середине 1970-х гг.

Электронные микроскопы дороги в изготовлении и обслуживании, но капитальные и текущие расходы на системы конфокальных световых микроскопов в настоящее время совпадают с затратами на основные электронные микроскопы. Микроскопы, предназначенные для достижения высоких разрешений, должны размещаться в устойчивых зданиях (иногда под землей) со специальными услугами, такими как системы подавления магнитного поля.

Образцы в основном следует рассматривать в вакууме , поскольку молекулы, составляющие воздух, будут рассеивать электроны. Исключением является жидкофазная электронная микроскопия с использованием либо закрытой жидкостной ячейки, либо камеры окружающей среды, например, в сканирующем электронном микроскопе окружающей среды , который позволяет просматривать гидратированные образцы при низком давлении (до 20  Торр или 2,7 кПа). влажная среда. Также были разработаны различные методы in situ электронной микроскопии газовых образцов.

Сканирующие электронные микроскопы, работающие в обычном режиме высокого вакуума, обычно получают изображения проводящих образцов; поэтому для непроводящих материалов требуется проводящее покрытие (сплав золото / палладий, углерод, осмий и т. д.). Низковольтный режим современных микроскопов позволяет наблюдать непроводящие образцы без покрытия. Непроводящие материалы можно также визуализировать с помощью сканирующего электронного микроскопа переменного давления (или условий окружающей среды).

Небольшие стабильные образцы, такие как углеродные нанотрубки , панцири диатомовых водорослей и мелкие минеральные кристаллы (например, волокна асбеста), не требуют специальной обработки перед исследованием в электронный микроскоп. Образцы гидратированных материалов, включая почти все биологические образцы, должны быть приготовлены различными способами, чтобы стабилизировать их, уменьшить их толщину (ультратонкие срезы) и повысить их электронно-оптический контраст (окрашивание). Эти процессы могут приводить к появлению , но их обычно можно идентифицировать, сравнивая результаты, полученные с использованием совершенно разных методов подготовки образцов. С 1980-х годов ученые все чаще используют анализ замороженных и застеклованных образцов, что еще раз подтверждает достоверность этого метода.

Общие сведения для работы с микроскопом

Эксплуатируя данный прибор необходимо знать правила работы с микроскопом:

Работу необходимо выполнять сидя.
Следует осмотреть прибор и протереть от пыли мягкими салфетками зеркальце, объектив и окуляр.
При работе с микроскопом нежелательно его передвигать, поставить слева от себя.
Произвести открытие диафрагмы, привести конденсор к верхнему положению.
Работу стоит начинать с малого увеличения.
Объектив довести до одного сантиметра от стекла с наблюдаемым объектом.
Равномерно распределить освещение поля зрения, используя окуляр, в который необходимо смотреть глазом, и вогнутое зеркало.
Переместить микропрепарат на столик микроскопа. Наблюдая сбоку, опустить объектив до уровня 4-5 мм над исследуемым объектом, используя для этого макровинт.
Глядя глазом в окуляр, производить вращательные движения грубого винта, для подведения объектива к положению, в котором будет четко видно изображение.
Перемещая стекло с препаратом, найдите место, где исследуемый объект будет располагаться по центру вашего поля зрения в микроскопе.
В случае отсутствия изображения, повторите с шестого по девятый пункты.
Используя микрометренный винт, добейтесь необходимой четкости изображения

Обратит внимание на то, не выходит ли точка между рисками на микрометренном механизме, за пределы рисок. Если выходит, то верните ее в стандартное положение.
Заключаем правила работы с микроскопом, уборкой рабочего места

Необходимо вернуть увеличение с большого на малое, произвести поднятие объектива, снять препарат и протереть микроскоп, далее накрыть полиэтиленом и вернуть в шкафчик.

Данные правила в большей мере относятся к оптическим микроскопам. Строение микроскопа, например, электронного или рентгеновского, отличается от светового, а потому основные правила работы могут также отличаться. Особенности работы с такими устройствами можно найти в инструкции к ним.

Особенности работы с устройством

Для эффективного изучения объектов следует соблюдать ряд правил при работе с микроскопом. Придерживаясь их, пользователь более эффективно проведет исследование предмета:

  1. Перед началом работы следует подготовить себе место за столом, поставив удобный стул.
  2. Все действия необходимо выполнять только сидя.
  3. Прибор надо протереть от пыли и пятен мягкой салфеткой.
  4. Заняв место за столом, установить микроскоп немного левее себя.
  5. Работа начинается с небольшого увеличения.
  6. Затем устанавливается уровень освещения. Для этого следует включить источник света и, глядя в окуляр одним глазом, установить нужную яркость. Если микроскоп с зеркалом, его направляют вогнутой стороной на окно, чтобы отражение света попадало на предметный столик.
  7. Когда прибор будет настроен, на столик крепится зажимами исследуемый объект. Далее, винтом грубой регулировки тубус устанавливается так, чтобы расстояние между линзой и предметом было 4—5 мм.
  8. Проверив местоположение объекта, винтом тонкой регулировки устанавливается окончательная резкость.
  9. Для детального изучения предмета, повернув револьверную головку, следует установить объектив, увеличивающий в 40 раз. Затем опять микрометренным винтом настроить правильный фокус. Причем регулировка осуществляется таким образом, чтобы риска на винте постоянно находилась между двумя черточками на коробке механизма. Если это правило нарушить, винт просто перестанет работать.

Закончив работу с большим увеличением, следует опять вернуться на малое значение, поднять объектив, убрать объект со стола, протереть все детали прибора, поставить его в шкаф и накрыть полиэтиленовой пленкой.

Как устроен микроскоп

Приобретая микроскоп, вы сможете расширить границы своих возможностей, заглянуть в микрокосмос и изучить его обитателей. Попробуйте стать исследователями окружающего мира, однако первым делом познакомьтесь с устройством микроскопа и правилами, которые необходимо соблюдать при работе с ним.

Микроскоп — сложный оптический прибор. Чтобы научиться с ним работать, необходимо знать, из каких частей он состоит

Для того чтобы правильно использовать световой микроскоп, необходимо знать его строение и понимать принцип работы.

Если посмотреть на микроскоп в целом, то это всего лишь очень сильное увеличительное стекло. Увеличивает микроскоп с помощью нескольких линз, одна часть которых находится в окуляре, а другая — в объективе. Мощность линз всегда указана на их оправе. Для того чтобы узнать мощность вашего микроскопа, необходимо перемножить цифры на объективе и окуляре. Так, если микроскоп имеет окуляр с 20-кратным увеличением и объектив 4, то он дает увеличение в 80 раз. Современные световые микроскопы могут увеличивать в 1500–3000 раз. Однако для домашней лаборатории вам вполне хватит максимального увеличения до 800 раз.

Итак, перейдем к строению микроскопа.

Окуляр находится в длинной полой трубке, которая называется тубус. При желании вы можете сменить окуляр на более мощный — он легко извлекается из тубуса.

Тубус с окуляром

Вы можете сами выбрать силу увеличения — для этого достаточно всего лишь покрутить диск с объективами до щелчка. Поскольку сила линз указана на оправе, только вам решать, сильнее или слабее делать увеличение.

На другом конце тубуса имеется вращающийся диск, на котором расположены объективы. У современных микроскопов их сразу несколько — два, три и более.

Современные микроскопы оснащены сразу несколькими объективами

Под объективом находится предметный столик. Как понятно из названия, это то самое место, куда необходимо помещать исследуемые объекты. С обеих сторон микроскопа есть два больших винта, они нужны для того, чтобы приближать или отдалять предмет от объектива, — так настраивается резкость. Под предметным столиком вы найдете зеркало, очень важную часть микроскопа. С помощью зеркала свет направляется на объект, лежащий на предметном столике. Так можно настроить яркость. Все элементы микроскопа организуются в единую целостную систему благодаря штативу — крепкой металлической конструкции.

Объект должен лежать так, чтобы прямо через него проходил поток света от зеркала к объективу

В большинство микроскопов встроена лампочка, которая направляет необходимый поток света, так что вам не надо заботиться об освещении. Кроме того, есть бинокулярные микроскопы (с двумя окулярами), которые более удобны, чем монокулярные (с одним окуляром). К тому же первые берегут наше зрение: глаза устают значительно меньше, поскольку нагрузка на них распределяется равномерно.

Более удобным является бинокулярный микроскоп: изображение в нем предстает в более полном виде

Есть микроскопы, в предметные столики которых встроены два маленьких винта — это позволяет плавно передвигать предметный столик с объектом изучения, а не сдвигать его руками во время работы.

Если у вас дома есть компьютер, обзаведитесь цифровым микроскопом. Это даст возможность выводить изображения на экран монитора, раскрашивать, подписывать и сохранять их. Будет здорово, если вам удастся снять видеоизображение и создать свой собственный фильм!

С помощью компьютера и микроскопа можно создавать удивительные фильмы

История


Диаграмма, иллюстрирующая явления, возникающие в результате взаимодействия высокоэнергетических электронов с веществом

В 1926 году Ханс Буш разработал электромагнитную линзу.

По словам Денниса Габора , в 1928 году физик Лео Сцилард пытался убедить его построить электронный микроскоп, на который он подал патент. Первый прототип электронного микроскопа с четырехсоткратным увеличением был разработан в 1931 году физиком Эрнстом Руска и инженером-электриком Максом Кноллем в Берлинском техническом университете или Берлинском техническом университете. Аппарат был первой практической демонстрацией принципов электронной микроскопии. В мае того же года Рейнхольд Руденберг , научный руководитель Siemens-Schuckertwerke , получил патент на электронный микроскоп. В 1932 году Эрнст Любке из Siemens & Halske построил и получил изображения с прототипа электронного микроскопа, применяя концепции, описанные в патенте Руденберга.

В следующем, 1933 году, Руска построил первый электронный микроскоп, разрешение которого превосходило разрешающую способность оптического (светового) микроскопа. Четыре года спустя, в 1937 году, Сименс профинансировал работу Эрнста Руска и Бодо фон Борриса и нанял Гельмута Руска , брата Эрнста, для разработки приложений для микроскопа, особенно с биологическими образцами. Также в 1937 году Манфред фон Арденн первым изобрел сканирующий электронный микроскоп . Siemens выпустила первый коммерческий электронный микроскоп в 1938 г. Первые североамериканские электронные микроскопы были построены в 1930 году в Университете штата Вашингтон Андерсоном и Фитсиммонсу и Университета Торонто , по Eli Франклин Burton и студентов Cecil Холл, Джеймс Хиллер , и Альберт Пребус. Компания Siemens выпустила просвечивающий электронный микроскоп (ТЕМ) в 1939 году. Хотя современные просвечивающие электронные микроскопы способны увеличивать в два миллиона раз, как научные инструменты, они по-прежнему основаны на прототипе Руска .

Метод световой микроскопии

Предельная разрешающая способность человеческого глаза составляет около 0,1 мм. Это понятие отражает минимальное расстояние, на котором 2 соседние точки определяются как отдельные объекты. Микрочастицы, клеточные структуры и дефекты поверхности имеют размер менее 100 мкм, поэтому для их исследования требуется специальное оборудование.

Историческая справка

Первые оптические микроскопы были изобретены в XVI-XVII вв. Первым, кто заметил увеличительный эффект комбинации из нескольких линз, был венецианский врач Джироламо Фракасторо. В 1609 г. Галилео Галилей представил собственный вариант прибора с 2 стеклами: выпуклым и вогнутым. Первое устройство называлось оккиолино (occhiolino).

Через 10 лет после этого голландский ученый Корнелиус Дреббель усовершенствовал конструкцию, использовав для объектива 2 выпуклые линзы.

Практическое применение микроскопа началось с конца XVII в., когда Антони Ван Левенгук использовал собственное оптическое устройство для исследования биологических структур. Его микроскоп содержал всего одно мощное стекло, что уменьшало количество дефектов картинки.

Приборы Левенгука позволяли увеличить изображение в 275 раз и рассмотреть строение бактерий, дрожжей, эритроцитов, одноклеточных микроорганизмов и насекомых.

Популяризации микроскопии способствовала и книга английского исследователя Роберта Гука, которая вышла в 1664 г. В ней ученый ввел термин «клетка» и опубликовал гравюры некоторых микрообъектов.

Методы микроскопии выбираются в зависимости от характера и свойств изучаемых объектов.

В течение следующих столетий конструкция оптического микроскопа непрерывно совершенствовалась. Несмотря на то, что в первой половине XX в. были изобретены электронные приборы, которые позволяли рассмотреть нанообъекты, световой метод не теряет своей популярности. В 2006 г. группа немецких ученых разработала оптическое устройство под названием наноскоп, которое обладает разрешающей способностью 10 нм.

Подробно о принципе действия

Принцип работы оптического микроскопа основывается на прохождении прямого или отраженного луча света через систему линз.

Объектив прибора содержит до 14 стекол. При прохождении светового пучка через эту часть устройства изображение увеличивается до 100 раз, а при прохождении окуляра — в 20-24 раза. Выпуклые и вогнутые стекла позволяют сфокусировать картинку на сетчатке или приспособлениях для документирования информации.

Увеличивающие линзы имеют 2 дефекта. Сферическая аберрация мешает фокусировать сразу все поле исследования, а хроническая приводит к появлению яркой каймы по контуру изображения. Чтобы компенсировать дефекты, окуляр и объектив оснащаются корригирующими стеклами.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы

Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа