Закон Фарадея
Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.
Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.
Формула закона электромагнитной индукции Фарадея выглядит следующим образом:
Рис. 2. Формула закона электромагнитной индукции
И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.
Суть процесса
Движущей силой электролиза является электричество. Под действием энергии электрического тока осуществляется химическая реакция, которая не происходит самопроизвольно.
Процессы восстановления и окисления протекают раздельно, на различных электродах. В качестве электродов берутся любые материалы, способные проводить электрический ток. Чаще всего это металлы. Из неметаллов используют углерод, из него изготавливают графитовые стержни. В редких случаях в качестве электрода выступают жидкости.
В расплав помещают два противоположно заряженных электрода, к которым движутся разнозаряженные ионы.
Положительно заряженные катионы, в которых количество электронов меньше количества протонов, движутся к отрицательному полюсу электрода – катоду. В качестве катода берут металлическую пластину из меди, латуни, цинка, алюминия.
К аноду – положительному полюсу – движутся анионы. Это отрицательно заряженные ионы, в которых число электронов превышает количество протонов. Анод в процессе электролиза окисляется, то есть растворяется. Поэтому в качестве анода берут материал, не влияющий на химический процесс. Такой анод называется инертным электродом. Подходящие материалы – графит, платина.
Рис. 1. Движение анионов и катионов при электролизе.
Электролиз растворов протекает сложнее, чем расплавов. В растворе участвуют ионы вещества и ионы растворителя, в расплавах – только ионы вещества. Главным продуктом электролиза расплава является металл (всегда катион). Побочные продукты:
- газ – кислород, водород, хлор;
- жидкости – вода, оксид серы (VI), бром.
Рис. 2. Схема установки для получения натрия электролизом.
На катоде происходит процесс восстановления, на аноде – процесс окисления.
1836: изобретение экранированной камеры
Физик Фарадей обнаружил, что, когда электрический проводник заряжен, весь лишний заряд скапливается на внешней его стороне. Это означает, что внутри комнаты или клетки, сделанной из металла, дополнительный заряд не появляется. Например, человек, одетый в костюм Фарадея, т. е. с металлической подкладкой, не подвергается действию внешнего электричества. Кроме защиты людей, клетка Фарадея может использоваться для проведения электрических или электрохимических экспериментов, чувствительных к внешним помехам. Экранированные камеры также могут создавать мертвые зоны для мобильной связи.
Закон электролиза
В 1833 году М. Фарадеем был установлен закон электролиза.
Определение 5
Закон Фарадея определяет количества первичных продуктов, которые выделяются во время электролиза на электродах. Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
m=kQ=kIt, где k является электрохимическим эквивалентом.
Масса вещества, выделившегося на электроде, равняется массе всех ионов, пришедших к электроду, и запишется n=mN=mQq=mqIt.
Значения m и q являются массой и зарядом одного иона соответственно, а N=Qq — числом ионов, пришедших к электроду при прохождении через электролит с зарядом Q. Отсюда следует, что электрохимический эквивалент k равняется отношению массы m иона данного вещества к его заряду q.
Заряд иона является произведением валентности вещества n на элементарный заряд e(q=ne), тогда запись выражения для k примет вид
k=mq=mNАneNА=1FMn.
Значение NА является постоянной Авогадро, M=mNА — молярной массой вещества, F=eNА — постоянной Фарадея.
F=eNА=96485 Клмоль.
Определение 6
Постоянная Фарадея численно равняется заряду, который следует пропустить через электролит, для выделения на электроде одного моля одновалентного вещества.
Запись закона Фарадея для электролиза имеет вид
m=1FMnIt.
Явление электролиза широко применимо в современном промышленном производстве.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Процесс на аноде
Какие процессы будут протекать на аноде зависит от материала анода и самого электролита. Нерастворимые аноды в процессе электролиза не окисляются, тогда как растворимые аноды разрушаются и в виде ионов переходят в раствор.
Рассмотрим процессы, происходящие на инертном (нерастворимом) аноде:
При электролизе бескислородных кислот и их солей (исключение HF и фториды) на аноде окисляются их анионы.
2Cl— -2e— = Cl2
При электролизе кислородсодержащих кислот и их солей c максимальной степенью окисления на аноде происходит окисление воды, в связи с тем, что потенциал окисления воды меньше, чем для таких анионов.
2H2O -4e— = O2 + 4H+
При электролизе кислородсодержащих кислот и их солей c промежуточной степенью окисления на аноде происходит окисление анионов кислот
SO32- + H2O -2e— = SO42- + 2H+
В таблице ниже представлены наиболее типичные случаи электролиза с химической точки зрения
Водный раствор соли малоактивного металла и бескислородной кислоты с инертным анодом |
CuBr2 + H2O = Cu + Br2 + H2O K: Cu2+ + 2e— = Cu
A: 2Br— -2e— = Br2 |
Водный раствор соли активного металла и кислородсодержащей кислоты с инертным анодом |
K2SO4 + 2H2O = K2SO4 + 2H2 + O2 K: 2H2O +2e— = H2 + 2OH—
A: 2H2O -4e— = O2 + 4H+ Т.е. происходит разложение воды |
Водный раствор соли активного металла и бескислородной кислоты с инертным анодом |
KI + H2O = 2KOH + H2 + I2 K: 2H2O +2e— = H2 + 2OH—
A: 2I— -2e— = I2 |
Водный раствор соли малоактивного металла с анодом из того же металла |
CuSO4 K: Cu2+ + 2e— = Cu
A: Cu — 2e— = Cu2+ |
Электролиз расплавов (скачать pdf)
Напомним, что на катоде происходит восстановление катионов, а на аноде – окисление анионов. В электролизе расплавов вода отсутствует, следовательно, любые (даже активные) металлы могут быть восстановлены на катоде. В случае кислородсодержащих кислотных остатков необходимо следовать следующему правилу: атомы кислорода окисляются до простого вещества и выделяется оксид неметалла.
1. Соли:
CuCl2
Расписываем диссоциацию на ионы:
CuCl2 → Cu2+ + 2Cl–
Расписываем процессы, происходящие на катоде и аноде. Так как воды нет, любой металл будет восстанавливаться на катоде:
К: Cu2+ + 2e → Cu
A: 2Cl– – 2e → Cl2
Пишем суммарное уравнение:
CuCl2 → Cu + Cl2
Na2SO4
Расписываем диссоциацию на ионы:
Na2SO4 → 2Na+ + SO42–
Расписываем процессы, происходящие на катоде и аноде. В данном случае ср находится в степени окисления +6, т.е. окислить ее уже нельзя, следовательно, окисляем кислород до простого вещества. Сера переходит в оксид с той же степенью окисления:
К: Na+ + 1e → Na
A: 2SO42– – 4e → O2 + 2SO3
Анодный процесс по шагам:
1) сначала пишем окисление кислорода до простого вещества и SO3:
SO42– → O2 + SO3
2) Далее расставляем коэффициенты:
2SO42– → O2 + 2SO3
3) Уравниваем электроны: в левой части заряд 4– (так как заряд сульфат-иона 2– и их два), в правой – заряд 0, так как ионов нет. Следовательно, из левой части мы должны отнять 4 электрона, тем самым делая заряд 0 в обеих частях уравнения:
2SO42– – 4e → O2 + 2SO3
Сравниваем катодный и анодный процессы: количество принимаемых и отдаваемых электронов должно быть одинаковым. Следовательно, все коэффициенты катодного процесса необходимо умножить на 4:
К: 4Na+ + 4e → 4Na
A: 2SO42– – 4e → O2 + 2SO3
Теперь складываем левые и правые части катодного и анодного процессов:
2Na2SO4 → 4Na + O2 + 2SO3.
2. Щелочи:
KOH
Расписываем диссоциацию на ионы:
KOH → K+ + OH–
Расписываем процессы, происходящие на катоде и аноде:
К: K+ +1e → K
A: 4OH– – 4e → O2 + 2H2O
Анодный процесс по шагам:
1) Понимаем, что окисляться будет кислород до простого вещества (водород уже имеет степень окисления +1 и далее не может быть окислен). Также будет выделение воды – почему? Потому что больше ничего написать и не получится: 1) H+ написать не можем, так как OH– и H+ не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H+ +2e → H2), а на аноде протекают только процессы окисления.
OH–  → O2 + H2O
2) Расставляем коэффициенты:
4OH–  → O2 + 2H2O
3) Уравниваем число электронов в левой и правой частях уравнения:
4OH– – 4e → O2 + 2H2O
Вычитаем 4e, так как в левой части присутствуют 4 отрицательных заряда, а в правой части ионов нет. В итоге получаем заряд 0 в обеих частях уравнения.
Далее уравниваем число принимаемых и отдаваемых электронов на катоде и аноде (все коэффициенты катодного уравнения умножаем на 4):
К: 4K+ + 4e → 4K
A: 4OH– – 4e → O2 + 2H2O
Теперь складываем левые и правые части катодного и анодного процессов:
4KOH → 4K + O2 + 2H2O.
Законы Майкла Фарадея
В результате проведения многих исследований в 1834 году английский физикохимик Майкл Фарадей (в его честь названа единица измерения электрической емкости — фарада) вывел два закона, которые способны количественно описать процесс электролиза. Хотя сам факт разложения соединений под действием проходящего электричества через их растворы был открыт задолго до Фарадея. В 1800 году другой английский ученый Уильям Николсон установил экспериментально этот факт.
Заслуги Фарадея в исследовании электролиза огромны. Он ввел в физикохимию основные термины, которые до сих пор используются для описания этого процесса. Два закона ученого в современной формулировке представляются следующим образом:
- Масса вещества, которая оседает на электроде в процессе электролиза, прямо пропорциональна количеству электричества, проходящему через рассматриваемый электрод. Под количеством электричества понимается заряд, который в системе СИ измеряется в кулонах.
- Для постоянного количества электричества масса химического соединения, которая образуется в ходе электролиза на электроде, является прямо пропорциональной величиной эквиваленту этого вещества. Под эквивалентом полагается отношение молярной массы к количеству молей электронов, участвующих в реакции. Это число совпадает с валентностью элемента, например, для Al3+ оно равно 3, а для H+ составляет 1.
Математическая формула
Оба закона получены Фарадеем экспериментальным путем. Их словесные формулировки можно легко объединить и перевести на математический язык. Общее уравнение, которое удобно использовать при решении любых практических задач, принимает следующую форму:
m = (Q/F)*(M/z).
Здесь m — масса образующегося вещества на электроде, Q — заряд, прошедший через электрод в процессе реакции, F — коэффициент пропорциональности, который называют постоянной Фарадея, M — молярная масса вещества, участвующего в химической реакции, z — его валентность (безразмерное число).
Первый множитель этого уравнения математически отражает сформулированный первый закон Фарадея, соответственно, второй множитель является выражением пропорциональности массы вещества его эквиваленту (M/z).
Эту формулу можно преобразовать, если вспомнить из курса общей физики, что заряд вычисляется по формуле:
Q = I*t.
Здесь I — электрический ток в амперах, t — время его прохождения через электролит. Подставив это выражение в математический закон Фарадея, и преобразуя его, можно получить следующие формулы:
m = kIt = (I*t/F)*(M/z) ==>
n*z*F = I*t.
Значение постоянной F
Численное значение постоянной Фарадея составляет приблизительно 96500 Кл/моль. Физический смысл этой величины заключается в том, что она говорит, какое количество электричества необходимо пропустить через раствор, чтобы выделилось на электроде 1 моль одновалентного вещества.
Величина F тесно связана с постоянной Авогадро NA и с элементарным зарядом электрона e следующим выражением:
F = NA*e.
Эта формула в XIX веке была использована учеными для точного определения числа NA. Сам Фарадей определил постоянную, носящую его фамилию, благодаря изучению процесса электролиза серебряного раствора.
В настоящее время проводятся эксперименты с целью точного определения величины F (а значит, NA), чтобы ее использовать для переопределения единицы измерения массы — килограмма.
Пример решения задачи
Рассмотрим электролиз хлорида кальция в водном растворе. Химическая формула соединения CaCl2. В воде оно хорошо растворяется с образованием ионов Ca2+ и Cl-. Пусть через этот раствор пропустили постоянный ток 5 ампер в течение 2 часов. Необходимо определить массы газообразного хлора и твердого кальция, которые выделятся на аноде и катоде, соответственно.
Известные данные задачи позволяют без проведения промежуточных вычислений провести расчет по современной формуле Фарадея:
- Для анода получается: 2*Cl- — 2*e = Cl2. m (Cl2) = (I*t/F)*(M/z) = (5*7200/96500)*(0,0355/1) = 13,2 грамма.
- Для катода получается: Ca2+ + 2*e = Ca. m (Ca) = (I*t/F)*(M/z) = (5*7200/96500)*(0,040/2) = 7,5 грамма.
Для проведения расчетов использовались молярные массы химических элементов Ca и Cl из таблицы Д. И. Менделеева.
Таким образом, законы Майкла Фарадея являются универсальными для их практического применения к любым химическим веществам, которые участвуют в процессах электролиза. Они позволяют количественно выразить результаты реакций на электродах.
ФИЗИКА
§ 3.5. Закон электролиза
При электролизе на электродах происходит выделение вещества. От чего зависит масса вещества, выделяющегося за определенное время?
iiΔ
Масса иона, как мы уже знаем, равна
где М — молярная (или атомная) масса вещества, а NA — постоянная Авогадро, т. е. число ионов в одном моле. Число ионов, осевших на электроде,
где Δq = IΔt — заряд, протекший через раствор электролита за время Δt, q1. — заряд иона, который равен произведению элементарного заряда е на валентность n атома (или группы атомов), из которого образовался ион: q1 = еп.
При диссоциации молекул, состоящих из одновалентных атомов (n = 1), возникают однозарядные ионы. Например, при диссоциации молекулы бромида калия КВг возникают ионы К+ и Вг-, а при диссоциации молекулы медного купороса CuSO4 получаются два двухзарядных иона Сu+2 и SO-24, так как атом меди и кислотный остаток в данном соединении двухвалентны (n = 2).
Подставляя в формулу (3.5.1) выражения (3.5.2) и (3.5.3) и учитывая, что Δq = IΔt, а q1 = en, получим:
Закон Фарадея
Обозначим через k коэффициент пропорциональности между массой вещества m и зарядом Δq = lΔt в формуле (3.5.4):
Тогда формула (3.5.4) примет вид:
Следовательно, масса вещества, выделившегося на каждом из электродов, прямо пропорциональна силе тока и времени прохождения тока через раствор электролита.
Это утверждение, полученное нами теоретически, впервые было установлено в 1836 г. экспериментально М. Фарадеем и носит название закона электролиза Фарадея.
Коэффициент k в формуле (3.5.6) называют электрохимическим эквивалентом вещества и выражают в килограммах на кулон (кг/Кл). Из формулы (3.5.6) видно, что электрохимический эквивалент k численно равен массе вещества, выделившегося на электроде, при переносе ионами через раствор электролита заряда, равного 1 Кл.
Электрохимический эквивалент имеет простой физический смысл. Так как = mi и en = g1, то, согласно выражению (3.5.5),
т. е. электрохимический эквивалент данного вещества равен отношению массы иона этого вещества к его заряду.
Из формулы (3.5.5) следует также, что электрохимические эквиваленты веществ прямо пропорциональны молярным массам и обратно пропорциональны валентностям этих веществ.
При этом надо иметь в виду, что некоторые химические элементы в разных соединениях могут обладать различной валентностью. Так, например, медь одновалентна в соединениях CuCl, Cu2O и еще в некоторых других соединениях и двухвалентна в СuО, CuSO4 и еще в некоторых соединениях. В первом случае, когда медь одновалентна, ее электрохимический эквивалент равен 6,6 • 10-7 кг/Кл, а для двухвалентной меди электрохимический эквивалент в два раза меньше — он равен 3,3 • 10-7 кг/Кл.
Постоянная Фарадея
Произведение элементарного заряда (заряда электрона) e на постоянную Авогадро NA носит название постоянной Фарадея: F = eNA. Введя постоянную Фарадея в формулу (3.5.4), для массы вещества, выделившегося при электролизе на электроде, получим:
Согласно этой формуле постоянная Фарадея F численно равна заряду, который надо пропустить через раствор электролита, чтобы выделить на электроде один моль одновалентного вещества. Постоянная Фарадея, найденная из опыта, равна F = 9,65 • 104 Кл/моль. Для выделения на электроде одного моля n-валентного вещества через раствор электролита необходимо пропустить заряд, численно равный произведению nF.
Определение заряда электрона
Зная постоянную Авогадро NA и постоянную Фарадея F, можно найти модуль заряда одновалентного иона, т. е. заряд электрона:
Любой двухвалентный ион переносит заряд в два раза больший, трехвалентный — в три раза больший и т. д. Но никогда не бывает, чтобы один ион переносил заряд, содержащий дробную часть заряда одновалентного иона.
Этот вывод, полученный из закона Фарадея, впервые в истории физики привел к мысли о том, что заряд одновалентного иона (e = 1,6 * 10-19 Кл) представляет собой наименьший (элементарный) заряд, существующий в природе. Любой электрический заряд состоит из целого числа элементарных зарядов.
Вывод о существовании в природе элементарного электрического заряда был сделан Гельмгольцем в конце прошлого века (1881), когда в науке еще не существовало представления об электроне. Значение элементарного заряда, вычисленное на основании закона электролиза, совпадает со значением заряда электрона, которое в дальнейшем было получено при исследовании других явлений.
Произведение силы тока на время определяет массу вещества, выделяемого при электролизе. Закон электролиза позволяет найти значение элементарного электрического заряда. |
ФАРАДЕЙ, МАЙКЛ
ФАРАДЕЙ, МАЙКЛ
(Faraday, Michael) (1791–1867), английский физик. Также по теме: ФИЗИКА
Родился 22 сентября 1791 в предместье Лондона в семье кузнеца. С 12 лет работал разносчиком газет, затем учеником в переплетной мастерской. Занимался самообразованием, читал книги по химии и электричеству. В 1813 один из заказчиков подарил Фарадею пригласительные билеты на лекции Г.Дэви в Королевском институте, сыгравшие решающую роль в судьбе Фарадея. Благодаря Дэви он получил место ассистента в Королевской ассоциации.
В 1813–1815, путешествуя вместе с Дэви по Европе, Фарадей посетил лаборатории ряда стран. Помогал Дэви в химических экспериментах, начал самостоятельные исследования по химии. Осуществил ожижение газов, получил бензол. В 1821 впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет занимался исследованием связи между электрическими и магнитными явлениями, в 1831 открыл электромагнитную индукцию, лежащую в основе работы всех электрогенераторов постоянного и переменного тока.
Также по теме:
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ
В 1824 Фарадей был избран членом Королевского общества, в 1825 стал директором лаборатории в Королевской ассоциации. С 1833 состоял Фуллеровским профессором химии Королевского института, оставил этот пост в 1862. Широкую известность получили публичные лекции Фарадея. Используя огромный экспериментальный материал, Фарадей доказал тождественность известных тогда «видов» электричества: «животного», «магнитного», термоэлектричества, гальванического электричества и т.д. Стремление выявить природу электрического тока привело его к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом исследований стало открытие в 1833 законов электролиза (законы Фарадея). В 1845 Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле (эффект Фарадея). В том же году открыл диамагнетизм, в 1847 – парамагнетизм. Ввел ряд понятий – подвижности (1827), катода, анода, ионов, электролиза, электродов (1834); изобрел вольтметр (1833). В 1830-х годах предложил понятие поля, в 1845 впервые употребил термин «магнитное поле», а в 1852 сформулировал концепцию поля.
Основные работы по электричеству и магнетизму Фарадей представлял Королевскому обществу в виде серий докладов под названием Экспериментальные исследования по электричеству
(Experimental Researches in Electricity ). КромеИсследований , Фарадей опубликовал работуХимические манипуляции (Chemical Manipulation , 1827). Широко известна его книгаИстория свечи (A Course of Six Lectures on the Chemical History of a Candle , 1861).
Умер Фарадей в Хэмптон-Корте 25 августа 1867.
Кулонометры. Классификация кулонометров.
Наиболее точное определение количества электричества, проходящего через электрохимическую систему можно получить с помощью серебряного кулонометра. В этом случае точность определения составляет 0,005% . В серебряном кулонометре определяется масса серебра, выделяющаяся из водного раствора нитрата серебра. Платиновая чаша служит Имеются системы, в которых весь ток расходуется только на одну электрохимическую реакцию. Такие электрохимические системы используются для измерения количества электричества и называются кулонометрами.
Известны три основных типа кулонометров: весовые (гравиметрические), объемные (волюметрические) и титрационные.
В весовых кулонометрах (к ним относятся серебряные и медные) количество прошедшего в них электричества рассчитывается по изменению массы катода или анода. В объемных кулонометрах расчет производится на основании измерения объема получающихся веществ (газа в водородном кулонометре, жидкой ртути в ртутном кулонометре). В титрационныхкулонометрах количествоэлектричества определяется по данным титрования веществ, образующихся в растворе в результате электродной реакции.
Медный кулонометр наиболее распространен в практике лабораторных исследований, т.к. он является простым в изготовлении и достаточно точным. Точность определения количества электричества составляет 0,1 %. Кулонометр состоит из двух медных анодов и катода из тонкой медной фольги, расположенного между ними. Электролитом в медном кулонометре служит водный раствор состава: CuSO4 ∙ 5H2O, H2SO4 и этанол C2H5OH.Серная кислота повышает электрическую проводимость электролита и, кроме того, препятствует образованию основных соединений меди в прикатодном пространстве, которые могут адсорбироваться на катоде, увеличивая тем самым его массу. H2SO4в электролите медного кулонометра необходима для предотвращения накопления соединений Cu1+, которые могут образовываться в результате реакции диспропорционирования:
Cu0+ Cu2+ → 2Cu+
Этиловый спирт добавляют в электролит для получения более мелкокристаллических, компактных катодных осадков и с целью предотвращения окисления медных электродов кулонометра.
О количестве прошедшего электричества судят по изменению массы катода, до и после электролиза. Катодом, а анод готовится из чистого серебра.
В качестве электролита в серебряном кулонометре используется нейтральный или слабокислый 30% раствор нитрата серебра.
Газовый водородно-кислородный кулонометр применяется для приближенных измерений малых количеств электричества. В нем измеряют общий объем водорода и кислорода, выделяющихся при электролизе водного раствора H2SO4или NaOH, а из этой величины вычисляют количество прошедшего электричества. Применяют эти кулонометры сравнительно редко, т.к. точность их небольшая, а в работе они менее удобны, чем весовые кулонометры.
К объемным кулонометрам относится также ртутный кулонометр. Он применяется главным образом в промышленности для измерений количества электричества. Точность ртутного кулонометра составляет 1%, но он может работать при больших плотностях тока. Анодом служит ртуть. Уголь – катод. Электролитом служит раствор иодида ртути и иодида калия. По уровню ртути в трубке рассчитывают количество электричества.
Наиболее распространенные из титрационных кулонометров – йодный и кулонометр Кистяковского.
Йодныйкулонометр представляет собой сосуд с разделенными катодным и анодным пространствами платиново-иридиевыми электродами. В анодное отделение вводят концентрированный раствор иодида калия с добавлением соляной кислоты, в катодное отделение – раствор соляной кислоты. При пропускании тока на аноде выделяется йод, который затем титруют тиосульфатом натрия (Na2S2O3). По результатам титрования рассчитывают количество электричества.
Кулонометр Кистяковского — это стеклянный сосуд. Анодом служит серебряная проволока, впаянная в стеклянную трубку со ртутью, для обеспечения контакта. Сосуд заполняют раствором нитрата калия (15-20%). В этот раствор погружают платиново-иридиевый катод. При пропускании тока происходит анодное растворение серебра. И также по результатам титрования раствора рассчитывают количество электричества.
Первый закон Фарадея
Основная статья: Законы электролиза Фарадея
В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:
m=k⋅q=k⋅I⋅t{\displaystyle m=k\cdot q=k\cdot I\cdot t},если через электролит пропускается в течение времени t постоянный ток с силой тока I.
Коэффициент пропорциональности k{\displaystyle k} называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.
Вывод закона Фарадея
- m=miNi{\displaystyle m=m_{i}N_{i}} (1)
- mi=MNa{\displaystyle m_{i}=M/N_{a}} (2)
- Ni=Δqqi{\displaystyle N_{i}={\frac {\Delta q}{q_{i}}}} (3)
- Δq=IΔt{\displaystyle \Delta q=I\Delta t} (4)
- qi=ez{\displaystyle q_{i}=ez}, (5)
- где z — валентность атома (иона) вещества,
- e — заряд электрона
- Подставляя (2)-(5) в (1), получим
- m=μzeNAIΔt{\displaystyle m={\frac {\mu }{zeN_{A}}}I\Delta t}
- m=μzFIΔt{\displaystyle m={\frac {\mu }{zF}}I\Delta t},
где F=eNA{\displaystyle F=eN_{A}} — постоянная Фарадея.
- k=μFz{\displaystyle k={\frac {\mu }{Fz}}}
- m=kIΔt{\displaystyle m=kI\Delta t}
Понятие об электролитах
Прежде чем говорить об уравнении Фарадея, следует изучить свойства веществ, которые называют электролитами. Определение в химии для них дается простое: это любые соединения, раствор или расплав которых способен проводить электрический ток.
Для существования направленного движения зарядов внутри какой-либо субстанции необходимо выполнение двух обязательных условий:
- Наличие пространственной разницы потенциалов электрического поля внутри субстанции. Эта разница может создаваться за счет электрических батарей, например, внутри аккумуляторов. Ток должен быть постоянным, а не переменным.
- Существования свободных заряженных частиц. Если раствор или расплав являются нейтральными, то они образованы как положительными (катионы), так и отрицательными (анионы) частицами. Важным моментом является их способность свободно перемещаться внутри субстанции при приложении к ней некоторой разницы потенциалов.
Дело в том, что дистиллированная (абсолютно чистая) вода не проводит электричество, однако, уже незначительное количество примесей в ней делает ее хорошим проводником. Поскольку она также является замечательным растворителем благодаря полярному строению ее молекул, то часто применяется для приготовления растворов электролитов.