Виды электронных микроскопов
Современные виды увеличительных приборов включают в себя:
1. ПЭМ, или просвечивающий электронный микроскоп. В этой установке изображение очень тонкого, толщиной до 0,1 мкм, объекта формируется при взаимодействии пучка электронов с исследуемым веществом и с последующим его увеличением находящимися в объективе магнитными линзами.2. РЭМ, или растровый электронный микроскоп. Такой прибор позволяет получить изображение поверхности объекта с большим разрешением, составляющим порядка нескольких нанометров. При использовании дополнительных методов подобный микроскоп выдает информацию, помогающую определить химический состав приповерхностных слоев.3. Туннельный сканирующий электронный микроскоп, или СТМ. При помощи данного прибора измеряется рельеф проводящих поверхностей, имеющих высокое пространственное разрешение. В процессе работы с СТМ острую металлическую иглу подводят к изучаемому объекту. При этом выдерживается расстояние всего в несколько ангстрем. Далее на иглу подают небольшой потенциал, благодаря чему возникает туннельный ток. При этом наблюдатель получает трехмерное изображение исследуемого объекта.
Презентация на тему: » Цифровой микроскоп. Внешнее устройство микроскопа.» — Транскрипт:
1
Цифровой микроскоп
2
Внешнее устройство микроскопа
3
Микроскоп позволяет: Увеличивать изучаемые объекты, помещённые на предметный столик, в 10, 60 и 200 раз! Фотографировать рассматриваемый объект. Снимать видеофильмы (верхняя часть микроскопа снимается, и при поднесении к объекту, работает как веб-камера, давая 10-кратное увеличение). Изменять, сохранять, распечатывать, делать коллекции готовых фото- и видеоматериалов.
4
Использование цифрового микроскопа в образовательном процессе нацелено: для повышения уровня мотивации и познавательной деятельности; для проведения лабораторных и практических работ на уроках окружающего мира индивидуально, групповым методом и фронтально с использованием мультимедийного проектора, научно-исследовательской деятельности обучающихся; для организации исследовательской деятельности
5
При проведении лабораторных работ на уроках цифровой микроскоп оказывает значительную помощь. Он дает возможность: изучать исследуемый объект не одному ученику, а группе учащихся одновременно, так как информация выводится на монитор компьютера; использовать изображения объектов в качестве демонстрационных таблиц для объяснения темы или при опросе учащихся; изучать объект в динамике; создавать презентационные фото и видеоматериалы по изучаемой теме; использовать изображения объектов на бумажных носителях
Важно и то, что можно указать и подписать части препарата, собрав из этих кадров слайд-шоу. Сделать это можно как сразу на уроке, так и в процессе подготовки к нему
6
Лабораторные работы Предлагаю выполнить простые лабораторные работы в домашних условиях : 1) Изучение строения плесени. 2) Изучение строения цветка. 3) Изучение строения насекомых.
7
1. Строение плесени ЗаданиеРисунок 1. Подцепите иголкой немного плесени, которая выроста на хлебе или овощах 2. Положите ее на стеклянную прозрачную поверхность (например, на крышку от небольшой чашки из набора микроскопа). Капните на плесень каплю воды и накройте ее второй крышкой, слегка придавив 3. Положите готовый препарат на предметный столик микроскопа, подложив под него белую бумагу 4. Поверните барабан микроскопа на 10-ти кратное увеличение и рассмотрите грибницу плесневого гриба. Сделайте фотографию объекта 5. Поверните барабан микроскопа на 60-ти кратное увеличение и рассмотрите головки со спорами, которые высыпались при надавливании на плесень. Сделайте фотографию объекта
8
2. Строение цветка ЗаданиеРисунок 1.Оторвите цветок у цветущего комнатного растения. Рассмотрите его лепестки под микроскопом. Сделайте фото (10-кратное увеличение) 2. Рассмотрите органы размножения цветка: тычинки и пестики на 60-кратном увеличении. Сделайте фото. 3. Найдите пыльцу на 200-кратном увеличении. Сделайте фото пылинок
9
3. Строение насекомых ЗаданиеРисунок 1. Поймайте комнатную муху (или найдите спящую за окном). Положите ее на белую бумагу. Рассмотрите на разном увеличении. Найдите сложные глаза, они очень крупные (состоят из простых глазок, словно мозаика). Сделайте фото 2. Рассмотрите крыло мухи. Мухи, в отличие от других насекомых, имеют только два крыла! Крылья перепончатые, имеют жилки. Сделайте фото жилок 3. Вторая пара крыльев у мух превратилась в жужжальца (на фото – маленькие, блестящие), поэтому мухи сильно жужжат при полете. Найдите их на 60-кратном увеличении. Сделайте фото 4. Рассмотрите ноги у мухи, их 3 пары. Ноги имеют членистое строение (состоят из сегментов), поэтому насекомых относят к типу Членистоногие. На концах лапок – присоски, чтобы ходить по гладкой поверхности (по стеклу)
Виды световых микроскопов с описанием
Особенности конструкции зависят от предназначения микроскопа. Для увеличения четкости изображения используют методы флуоресценции, люминесценции, инверсии и др.
Биологическое оборудование
Биологические приборы позволяют исследовать прозрачные или полупрозрачные объекты. Принцип их работы основан на изучении светлого поля в потоке проходящего света. Такие микроскопы применяют в лабораторной диагностике, ботанике, цитологии, микроэлектронике, археологии и пищевой промышленности.
Биологическое оборудование позволяет исследовать прозрачные объекты.
Для повышения разрешающей способности используют иммерсионные оптические системы. В этом случае между образцом и первым стеклом вводится жидкость с высоким коэффициентом преломления (минеральное масло, раствор глицерина, дистиллированная вода и др.).
Криминалистическое оборудование
Главная особенность криминалистического микроскопа — это возможность сравнения 2 объектов. Такое исследование помогает найти сходство между компонентами взрывных устройств, гильзами, пулями, волосами, волокнами и другими уликами.
Это позволяет снизить вероятность ошибок, построить модели объектов и сравнить с данными из электронных источников.
Флуоресцентные микроскопы
Флуоресцентные, или люминесцентные, микроскопы позволяют исследовать объекты, которые испускают световой поток после облучения ультрафиолетом. Они оборудованы коротковолновым источником освещения, светофильтрами и интерференционной пластинкой.
Флуоресцентный микроскоп — оптический прибор, показывающий в увеличенном виде клетки.
Флуоресцентные микроскопы активно применяют в лабораторной диагностике, в частности, при изучении клеток крови и антигенов. Для анализа предметов, которые не излучают свет, используют люминесцентные красители и порошки.
Поляризационные микроскопы
Поляризационный прибор является наиболее сложным из всех представленных видов микроскопов. Его используют для исследования анизотропных материалов, полимеров, некоторых клеток и микробиологических объектов.
Источник света со специальными фильтрами формирует поляризованный поток, который облучает образец.
Инвертированные с перевернутым положением объектива
В инвертированном микроскопе объектив располагается не над образцом, а под предметным столиком. Такие приборы применяют в биологии, медицине, промышленности, металлографии, криминалистике и других сферах.
Инвертированный микроскоп имеет особенную конструкцию.
Перевернутое положение оптической системы позволяет изучать более крупные образцы и работать со специальной посудой.
Микроскопы для металлографии
Металлографические микроскопы предназначены для исследования поверхности непрозрачных объектов. Изображение получают путем преломления отраженного светового луча.
Предметом изучения являются микродефекты поверхности и зерна сплавов. Помимо металлургии и промышленности, такие устройства применяют в геологии и археологии. Для обеспечения четкости используют специальные системы линз и зеркал.
Стереомикроскопы (дают объемное изображение)
Стереомикроскопы оснащены 2 объективами, что позволяет получать объемное изображение исследуемого образца. По сравнению с устройствами плоского поля они дают более резкую, четкую и контрастную картинку.
Стереомикроскопы позволяют получать объемное изображение.
Такие приборы используют в точном машиностроении, ювелирном деле и других областях промышленности.
Моновидеомикроскопы с возможностью получения видео
Видеомикроскопы предназначены для динамического наблюдения за образцом и фиксации изображения. Для повышения эффективности работы их оснащают специальными линзами, светофильтрами и адаптерами.
Устройство электронных микроскопов
Что лежит в основе работы новейших приборов для рассмотрения микроскопических объектов? Чем электронный микроскоп отличается от светового? Есть ли между ними какие-либо сходства?
Что касается принципиальной схемы, то у электронного микроскопа она аналогична схеме светового прибора. Отличие заключено лишь в том, что оптические элементы замещены подобными им электрическими.
Увеличение объекта в электронных микроскопах происходит за счет процесса преломления пучка света, проходящего сквозь исследуемый объект. Под различными углами лучи попадают в плоскость объективной линзы, где и происходит первое увеличение образца. Далее электроны проходят путь к промежуточной линзе. В ней происходит плавное изменение увеличения размеров объекта. Конечную картинку исследуемого материала дает проекционная линза. От нее изображение попадает на флуоресцентный экран.
Функция и строение инструмента
Микроскоп является важным инструментом в мире биологических наук. Это инструмент для научного образования и научных исследований. Без него человек никогда не сможет понять мир микроорганизмов.
Функция состоит в том, чтобы видеть вещи на разных уровнях или увеличениях (например, клетки, которые нельзя увидеть невооруженным глазом).
Чтобы лучше понять функцию и основную структуру рассмотрим строение устройства:
Окуляр
Именно через окуляр мы смотрим на образец, помещенный на подмостки микроскопа. Он содержит две или более линз. Наиболее распространенное увеличение для окуляра 10-х однако они также могут быть 2-x и 5-x. Глазная часть съемная и может быть заменена другой частью с другим увеличением.
Держатель окуляра
Просто соединяет окуляр с корпусом обычно с помощью установочного винта, чтобы пользователь мог легко менять окуляр для изменения увеличительной мощности.
Линза объектива
Основные линзы составного микроскопа и могут иметь увеличение 4-x, 5-x, 10-x, 20-x, 40-x, 50-x и 100-x. Значения увеличения обычно гравируются на стороне каждой линзы. Составная часть к которой крепятся эти линзы может поворачиваться вручную, чтобы получить объектив нужного увеличения для фокусировки на объекте.
Опора и наконечник
Опора соединяет линзовый аппарат с основанием. Наконечник соединяет объектив с корпусом. С помощью вращающейся носовой части можно прикрепить до пяти различных степеней увеличения при повороте в нужное положение и использовании с существующим окуляром.
Биология
§ 6. Устройство увеличительных приборов
- Какие увеличительные приборы вы знаете?
- Для чего их применяют?
Если разломить розовый, недозревший, плод томата (помидор), арбуза или яблока с рыхлой мякотью, то мы увидим, что мякоть плодов состоит из мельчайших крупинок. Это клетки. Они будут лучше видны, если рассмотреть их с помощью увеличительных приборов — лупы или микроскопа.
Устройство лупы. Лупа — самый простой увеличительный прибор. Главная его часть — увеличительное стекло, выпуклое с двух сторон и вставленное в оправу. Лупы бывают ручные и штативные (рис. 16).
Рис. 16. Лупа ручная (1) и штативная (2)
Ручная лупа увеличивает предметы в 2—20 раз. При работе её берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета наиболее чётко.
Штативная лупа увеличивает предметы в 10—25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке — штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.
Устройство лупы и рассматривание с её помощью клеточного строения растений
- Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?
- Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?
- Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?
Устройство светового микроскопа. С помощью лупы можно рассмотреть форму клеток. Для изучения их строения пользуются микроскопом (от греческих слов «микрос» — малый и «скопео» — смотрю).
Световой микроскоп (рис. 17), с которым вы работаете в школе, может увеличивать изображение предметов до 3600 раз. В зрительную трубку, или тубус, этого микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр (от латинского слова «окулус» — глаз), через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол.
На нижнем конце тубуса помещается объектив (от латинского слова «объектум» — предмет), состоящий из оправы и нескольких увеличительных стёкол.
Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещенного с помощью этого зеркала.
Рис. 17. Световой микроскоп
Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объекте. Например, если окуляр даёт 10-кратное увеличение, а объектив — 20-кратное, то общее увеличение 10 х 20 = 200 раз.
Порядок работы с микроскопом
- Поставьте микроскоп штативом к себе на расстоянии 5—10 см от края стола. В отверстие предметного столика направьте зеркалом свет.
- Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.
- Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1—2 мм от препарата.
- В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.
- После работы микроскоп уберите в футляр.
Микроскоп — хрупкий и дорогой прибор: работать с ним надо аккуратно, строго следуя правилам.
Устройство микроскопа и приёмы работы с ним
- Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.
- Познакомьтесь с правилами пользования микроскопом.
- Отработайте последовательность действий при работе с микроскопом.
Вопросы
- Какие увеличительные приборы вы знаете?
- Что представляет собой лупа и какое увеличение она даёт?
- Как устроен микроскоп?
- Как узнать, какое увеличение даёт микроскоп?
Задания
Выучите правила работы с микроскопом.
Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.
Знаете ли вы, что…
Световые микроскопы с двумя линзами были изобретены в XVI в. В XVII в. голландец Антони ван Левенгук сконструировал более совершенный микроскоп, дающий увеличение до 270 раз, а в XX в. был изобретён электронный микроскоп, увеличивающий изображение в десятки и сотни тысяч раз.
Как правильно пользоваться микроскопом: настраиваем прибор
Интересуясь, как пользоваться микроскопом Levenhuk, обратите внимание, что большинство моделей позволяет менять объектив прямо во время наблюдений поворотом револьверной головки. Для начала работы с устройством бренда «Левенгук» или Bresser необходимо выбрать оптику с наименьшими показателями увеличения и провести базовую настройку
-
Разместите стекло с препаратом (слайд) на предметном столике и приблизьте к объективу на расстояние 3-4 мм.
-
Соблюдая последовательность работы с микроскопом, используйте колесико грубой настройки, чтобы медленно отдалять образец наблюдений от объектива. Делать это нужно до тех пор, пока изображение не станет четким.
-
Аккуратно поверните колесико тонкой настройки, чтобы картинка обрела максимальную резкость.
Основные правила работы с микроскопом гласят, что предметный столик или объектив нужно именно отдалять. Если смотреть в окуляр и одновременно приближать препарат, легко повредить предметный столик или оптику. Приемы работы с микроскопом очень просты: чтобы сменить предельную степень увеличения, достаточно повернуть револьверную головку до характерного щелчка. Но делать это также необходимо под наблюдением: оптика с большей кратностью длиннее и может зацепить предметное стекло. Поэтому работать с микроскопом нужно очень аккуратно, при необходимости повторяя настройку для каждого объектива в отдельности.
Если вы используете бинокулярный прибор, все описанные действия необходимо проводить, используя лишь один окуляр. Второй при подготовке микроскопа к работе легко подогнать при помощи регулировочного кольца. Точность такой регулировки легко определить: смотря в окуляры обоими глазами, пользователь должен видеть только одно изображение высокой четкости.
Зная, как правильно пользоваться микроскопом, вы гарантированно совершите немало личных открытий! Изучайте удивительные тайны окружающего мира прямо у себя дома.
Стерео и цифровые микроскопы
Основное различие между стереомикроскопом и цифровым микроскопом — это увеличение . В стереомикроскопе увеличение определяется путем умножения увеличения окуляра на увеличение объектива. Поскольку цифровой микроскоп не имеет окуляра, увеличение с помощью этого метода невозможно. Вместо этого увеличение для цифрового микроскопа первоначально определялось тем, во сколько раз больше образец был воспроизведен на 15-дюймовом мониторе. Хотя размеры мониторов изменились, физический размер используемого чипа камеры не изменился. В результате значения увеличения и поле зрения остаются такими же, как в исходном разрешении, независимо от размера используемого монитора. Средняя разница в увеличении оптического микроскопа и цифрового микроскопа составляет около 40%. Таким образом, коэффициент увеличения стереомикроскопа обычно на 40% меньше, чем коэффициент увеличения цифрового микроскопа.
Поскольку в цифровом микроскопе изображение проецируется непосредственно на камеру CCD, можно получить записанные изображения более высокого качества, чем при использовании стереомикроскопа. Линзы стереомикроскопа созданы для оптики глаза. Присоединение ПЗС-камеры к стереомикроскопу приведет к получению изображения с искажениями для окуляра. Хотя изображение на мониторе и записанное изображение могут быть более высокого качества с цифровым микроскопом, применение микроскопа может определять, какой микроскоп предпочтительнее.
Основные модели видеоокуляров и их стоимость
Наименование | Основные характеристики | Ориентировочная цена |
Видеоокуляр ToupCam 5.0 MP CCD | 2/3″ цветной CCD-сенсор SONY, 5МР, c-mount, USB2.0. | 116300 руб. |
Видеоокуляр ToupCam XCAM0720PHB HDMI | 1/3″ цветной CMOS-сенсор 0,9 МП. Подключение к телевизору или монитору через HDMI кабель | 22700 руб. |
Видеоокуляр ToupCam 0.35 MP | 1/4″ цветной CMOS-сенсор Aptina (С). 0,3 MPix, программа ToupView. Эконом-версия. Компактный размер. Рекомендуется для совместной работы с учебными микроскопами | 3950 руб. |
Видеоокуляр ToupCam 2.0 MP | 1/2,7″ цветной CMOS-сенсор OV2710 (С). 2 MPix, программа ToupView. Эконом-версия. Компактный размер.Рекомендуется для совместной работы с учебными микроскопами | 6430 руб. |
Видеоокуляр ToupCam 5.1 MP | 1/2,5″ цветной CMOS-сенсор Aptina MT9T001. 5 MPix, программа ToupView. Рекомендуется для совместной работы с микроскопами серии Микромед 3,Микромед МЕТ, Микромед ПОЛАР 1 и ПОЛАР 2,Микромед И | 15940 руб. |
Видеоокуляр DCMС-510 SCOPE | 1/2,2″ цветной CMOS-сенсор. 5 MPix, программа ScopePhoto, узел крепления — разъем типа С-mount | 15860 руб. |
Видеоокуляр ToupCam 9.0 MP | 1/2,4″ цветной CMOS-сенсор Aptina MT9J003. 9 MPix, программа ToupView. Рекомендуется для совместной работы с микроскопами серии Микромед 3, Микромед МЕТ, Микромед ПОЛАР 1, ПОЛАР 2 и Полар 3, Микромед И | 24970 руб. |
Видеоокуляр ToupCam 10.0 MP |
1/2,3″ цветной CMOS-сенсор MT9J003(C). 10MPix. Скорость передачи данных выше в 1,7 раз по сравнению с ToupCam 9.0 MP. Программа ToupView. Рекомендуется для совместной работы с микроскопами серии Микромед 3, Микромед МЕТ, Микромед ПОЛАР 1, ПОЛАР 2 и Полар 3, Микромед И | 23360 руб. |
Видеоокуляр ToupCam 14 MP |
В камере применяется 14 мегапикельный CMOS сенсор. Для подключения используется интерфейс USB 2.0. 14 мегапиксельный сенсор позволяет получить снимки пригодные практически для любых целей, публикаций, и обучения. Камера позволяет достичь скорости съемки при полном разрешении (4096×3288 пикселей) в 1.8 кадра в секунду, 10 кадров в секунду при разрешении 2048×1644, и до 27 кадров в секунду при разрешении в 1024×822 пикселя. |
32700 руб. |
Для получения более подробной технической информации на
указанные модели видеоокуляров и предоставления коммерческого предложения с
актуальной ценой отправляйте запросы по координатам, указанным в разделе «Обо
мне».
Строение микроскопа
Стандартный оптический прибор имеет в своем строении следующие детали:
- насадку;
- окуляр;
- основание и штатив;
- объективы;
- револьверную головку;
- предметный и координатный столики;
- переключатель и осветитель;
- винты макрометрической и микрометрической фокусировки;
- конденсор с диафрагмой.
Оптическая система такого устройства представляет собой объективы, расположенные на револьверной головке, окуляры и в некоторых случаях призменный блок. При помощи оптической системы как раз и формируется изображение изучаемого образца на сетчатке глаза. Причем это изображение будет перевернутым.
В настоящее время многие детские микроскопы содержат в себе линзу Барлоу, применение которой позволяет добиться плавного увеличения изображения до 1000 крат и выше. Однако качество изображения при этом существенно страдает, что делает использование этой линзы в таких устройствах достаточно сомнительным.
В профессиональных устройствах для изменения увеличения используют только различные комбинации качественных объективов и окуляров. И уж конечно, в таких приборах никогда не будет использовать линза столько сомнительного качества.
Механическая система микроскопа представляет собой штатив, тубус, револьверную головку, механизмы фокусировки и предметный столик.
Для фокусировки изображения применяются механизмы фокусировки. Макрометрический винт применяют в работе с небольшими увеличениями, а микрометрический используется при высоких увеличениях. Стандартные школьные или детские микроскопы обычно комплектуются лишь макрометрическим винтом грубой фокусировки. Для лабораторных исследований в обязательном порядке понадобится и механизм тонкой фокусировки. Оптические устройства могут иметь раздельные механизмы грубой и точной фокусировки, а также содержать в себе коаксиальные винты микро и макрометрической регулировки фокуса.
Фокусировка прибора осуществляется при помощи перемещения предметного столика или тубуса устройства в вертикальной плоскости.
Предметный столик необходим для расположения на нем объекта. Можно выделить несколько их разновидностей:
- стационарный;
- подвижный;
- координатный.
Более комфортным для работы считается координатный предметный столик, которые позволяет перемещать образец для исследования в горизонтальной плоскости.
Объективы микроскопа располагаются непосредственно на револьверной головке. Ее вращение позволяет выбрать какой-либо из объективов, тем самым меняя увеличение. Профессиональные устройства оснащены как правило съемными объективами, которые вкручиваются в револьверную головку. Дешевые же варианты микроскопов имеют встроенные объективы.
Тубус микроскопа содержит в себе окуляр. В устройствах с тринокулярной или бинокулярной насадкой существует возможность регулировки расстояния между зрачками, а также коррекции диоптрий, что позволяет подстроить микроскоп под индивидуальные особенности каждого наблюдателя. В детских устройствах в тубусе помимо окуляра может находиться также линза Барлоу.
Осветительная система оптического устройства представляет собой диафрагму, конденсор и источник света.
Источник света может быть как внешний, так и встроенный. Стандартный микроскоп обычно включает в себя нижнюю подсветку. В некоторых детских устройствах иногда используют боковую подсветку, но она не несет за собой никакого практического эффекта.
Лучшие материалы месяца
- Коронавирусы: SARS-CoV-2 (COVID-19)
- Антибиотики для профилактики и лечения COVID-19: на сколько эффективны
- Самые распространенные «офисные» болезни
- Убивает ли водка коронавирус
- Как остаться живым на наших дорогах?
Конденсор и диафрагма используется для регулировки освещения микроскопа. Конденсоры могут быть однолинзовыми, двухлинзовыми или трехлинзовыми. При опускании или поднятии конденсора происходит либо рассеивание, либо конденсирование света, который освещает исследуемый образец.
Диафрагма представлена в двух вариантах: ирисовая, с плавным изменением диаметра, и ступенчатая, состоящая из нескольких отверстий разных диаметров. Соответственно увеличивая или уменьшая диаметр светового отверстия можно ограничить или увеличить поток света, льющегося на образец. Некоторые конденсоры оснащаются фильтродержателем, в который могут вставляться различные светофильтры.
Принцип действия
В первом оптическом приборе система линз давала обратное изображение микрообъектов. Это позволяло разглядеть строение вещества и мельчайшие детали, которые подлежали изучению. Принцип действия светового микроскопа сегодня схож с той работой, которую осуществляет рефракторный телескоп. В этом приборе свет преломляется в момент прохождения через стеклянную часть.
Как же увеличивают современные световые микроскопы? После попадания в прибор пучка световых лучей происходит их преобразование в параллельный поток. Только затем идет преломление света в окуляре, благодаря чему и увеличивается изображение микроскопических объектов. Далее эта информация поступает в нужном для наблюдателя виде в его зрительный анализатор.
Основные параметры, которые нужно учесть при выборе видеоокуляра
При подборе видеоокуляра к микроскопу необходимо учитывать ряд
важных параметров, среди который посадочный диаметр, тип матрицы, разрешение
изображения, цветопередача и скорость передачи данных, возможности программного
обеспечения.
Посадочный диаметр. Основной параметр, по которому подбирается видеоокуляр для конкретного микроскопа. Чаще всего используются приборы с тубусом диаметром 23,2 мм. Выпускаются также модели с нестандартными диаметрами, например 30 или 30,5 мм. Некоторые сразу комплектуются переходниками двух типов с размерами 23,2 – 30 мм и 23,2 – 30,5 мм.
Матрица сенсора. Матрица цифрового окуляра — самый главный элемент прибора. От ее типа и размера зависит качество изображения. Применяются матрицы CMOS и CDD. Первый тип самый распространенный. CMOS-сенсоры дешевле, при этом обеспечивают высокое качество картинки и ее бесперебойную передачу.
Чем больше размер сенсора, тем более качественными
получаются изображения, но и сам видеокуляр будет больше, дороже и тяжелее.
Особенно большие матрицы необходимы для профессиональных съемок с низким
уровнем искажений и возможностью масштабирования. Для учебных целей и задач, не
требующих наивысшего качества, вполне подойдет компактный видеоокуляр с
небольшим сенсором. Размеры матрицы указываются в долях дюйма: 1/2″,
1/3″, 1/4″. Большое значение имеет физический размер пикселя. От
этого параметра зависит светочувствительность матрицы, ее динамический
диапазон, соотношение полезного сигнала и шума (искажений). Чем размер пикселя
больше, тем более качественной получится съемка.
Разрешение. Эта характеристика указывает максимальный размер изображения в пикселях, который можно получить с помощью данного окуляра. Может варьироваться от 0,3 Мп до 14 Мп. Окуляры с разрешением более 8 Мп используются для профессиональных исследований, когда требуется четкое детализированное изображение, которое можно значительно увеличивать (для демонстрации на большом экране или распечатки в формате А2 и больше). Для большинства же задач вполне достаточно сенсора с разрешением 1,3 – 5 Мп.
Цветопередача. Чем больше цветов способен передать прибор, тем четче и ярче получится изображение.
Скорость передачи данных на ПК. Скорость зависит от разрешения и типа интерфейса. Чем выше разрешение, тем дольше будет передаваться картинка. Чаще всего видеоокуляры комплектуются USB 2.0. Для высокоскоростной передачи применяются USB 3.0.
Частота кадров. От этой характеристики зависит качество показа картинки в режиме реального времени.
Спектральный диапазон. Параметр, нужный для некоторых профессиональных задач, связанных с регистрацией тепловых процессов в образце.
Программное обеспечение. Все модели видеоокуляров комплектуются ПО, позволяющее, в зависимости от функционала, передавать изображение с микроскопа на ПК, производить обработку изображений, выбирать параметры съемки (контрастность, цветовую гамму, насыщенность цвета и т.п.), проводить измерения дины и ширины, радиуса, угловых размеров частей исследуемого образца.
Популярные темы сообщений
-
Река Нил
Нил это одна из величайших рек земного шара. Она является самой знаменитой рекой Африки. Она играет важную роль не только в транспорте, но и выполняет много функций эко системы Африки. Вокруг этой реки все не утихают споры,
-
Козерог созвездие
Многим нравится смотреть в небо, ведь оно загадочное и очень интересное. Кроме этого если вы посмотрите на восток, то там можно разглядеть созвездие Козерога. Лучше всего данное созвездие можно разглядеть в летнее время, а если быть точным,
-
Мох
Споровые небольшие растения, Бриофиты, у которых есть листья, стебли. Мхи, это высшие растения (организмы имеющие вегетативные органы, наиболее важные корень и побег), наиболее многочисленные, насчитывающие 10 тысяч видов,