Коэффициент использования светового потока уличных led-светильников

Какие лампы выбрать для освещения

При выборе светодиодных лампочек следует обратить внимание на наиболее критические параметры, которые принципиальны для качества освещения

  • Цветовая температура;
  • Тип рассеивателя;
  • Световой поток.

Цветовая температура

Цветовая температура светодиодов традиционно имеет три категории

  • WW— тёплый белый (цветовая температура 2500-3000 К);
  • W-белый (цветовая температура 3000-4200 К);
  • CW-холодный белый (цветовая температура выше 4500 К).

Визуально более высокая цветовая температура светят ярче. Так при одинаковой мощности визуальная яркость CW на четверть выше WW.

Тип рассеивателя

Рассеиватель может быть матовый либо прозрачный. Матовый рассеиватель обеспечивает более равномерное распределение светового потока, но потери интенсивности в нём могут достигать 25-30%. Для освещения относительно большой площади помещения более рационально использовать лампы с прозрачным рассеивателем, а вот в настольном светильнике однозначно матовый тип рассеивателя лучше.

Световой поток

При выборе лампочки обязательно обращайте внимание на её номинальный световой поток. Он зависит от типа и качества светодиодных матриц

Требуемая мощность светодиодной лампы зависит от рассмотренных выше параметров. При использовании тёплого света, номинальная мощность должна быть на 25-30% выше чем ламп холодного света.

Что нужно знать о методе

Для нашего метода вычислений требуется знать следующие виды параметров:

показатель запаса (k). Он учитывает запыленность, из-за чего происходит уменьшение светового потока, испускаемого лампочками (см. таблицу);

Параметры показателя запаса (k)

  • показатель уровня минимального светового обеспечения (Z ). Для него характерна неравномерность подсветки. Является функцией большинства переменных. Z зависит от расстояния между лампами к расчетной высоте (L / h);
  • показатель применения светового потока (h). Чтобы его найти, необходимо использовать индекс помещения (i ), а также предполагаемые величины отражения для имеющихся в помещении поверхностей (для пола rр, потолка rп и стен rс).

В данной ситуации для определения h, необходимо знать примерные показатели для разных поверхностей. Для светлых комнат:

  • rп = 70%;
  • rс = 50%;
  • rр = 30%.

Для комнат с незначительными выделениями пыли:

  • rп = 50%;
  • rс = 30%;
  • rр = 10%.

Для помещений с высоким уровнем запыленности:

  • rп = 30%;
  • rс = 10%;
  • rр = 10%.

При этом индекс помещения можно рассчитать по следующей формуле:

Формула определения индекса помещения

где В, А, h являются шириной, длиной и расчетной высотой. Для определения расчетной высоты используют такую формулу:

Вычисление расчетной высоты

где:

  • H — геометрическая высота конкретного пространства;
  • hсв — масса светильника;
  • hp — высота имеющейся рабочей поверхности.

Правильно рассчитав искомые величины, вы сможете использовать метод КИСП для любых типов помещений и светильников.

Алгоритм использования способа

Любой математический расчет требует соблюдения определенного алгоритма. Если его не придерживаться, то риск больших погрешностей значительно возрастет. Руководствуясь методом расчета коэффициента при применении светового излучения, нужно проделать следующее:

определить систему освещения. Это означает, что нужно определиться с типом источника света (светодиодные, галогеновые, люминесцентные или другие лампочки), видом осветительного прибора, при помощи которых будет обеспечиваться подсветка конкретного участка или целой комнаты;

Разнообразие источников света

провести сам расчет.

Как видим, алгоритм небольшой, но от этого КИСП не становится проще. Целью вычислений методом коэффициента использования светового потока является определение общего типа освещения. Вначале нужно выяснить следующие параметры:

  • сколько осветительных приборов требуется для того, чтобы создать минимальный уровень для освещенности (ЕH);
  • мощность лампы, требуемой для нормированного уровня светового потока.

Далее разберем, как рассчитать данным методом общее освещение.

Типовое значение светового потока для источников света

При приобретении осветительных устройств стоит обращать внимание на СП, который будет излучаться. На самих приборах и на упаковке не всегда проставлены значения этой величины

Всё зависит от фирмы изготовителя и достоверности информации. Лампочки накаливания продаются в картонном поясе и с численным обозначением напряжения и мощности на колбе. Сколько люмен выдаёт лампа, не написано. Однако присутствует связь между Р (Вт) и Ф (Лм).

Стандартные значения Ф для осветительных элементов

Лампа накаливания, мощность, Вт Светодиодная лампа, мощность, Вт Люминесцентная лампа, мощность, Вт Световой поток, Лм
20 2-3 5-7 ≈ 250
40 4-5 10-13 ≈ 400
60 8-10 15-16 ≈ 700
76 10-12 18-20 ≈ 900
100 12-15 20-30 ≈ 1200


Распространённые источники света

К сведению. Получившие популярность светодиодные лампы, как показывает таблица, устанавливать выгодно. При низком, по сравнению с другими источниками, энергопотреблении они отдают света больше.

Светодиодные светильники в задачах архитектурного освещения. Часть 1

Полупроводниковое освещение, использующее в качестве источников света светодиоды, является достаточно новым направлением светотехники. Ознакомившись с несомненными достоинствами светодиодных светильников, кто-то прорабатывает вопрос о целесообразности их производства, кто-то пробует использовать готовые изделия других производителей в своих проектах

В предлагаемой статье сделана попытка обозначить, на что следует обратить внимание как при выборе готовых светильников для проекта, так и при выборе отдельных компонентов для собственной разработки. Однако, учитывая тот факт, что светодиодная светотехника находит применение в самых разнообразных приложениях, каждое из которых обладает своей спецификой, в предлагаемой статье рассматривается только одно направление — светильники для архитектурного освещения

Преимущества и недостатки

Светильники, изготовленные с использованием светодиодов, обладают многими преимуществами, в сравнении с лампами накаливания и энергосберегающими источниками света, а именно:

  • Малая электрическая мощность, определяющая низкий уровень потребления электрической энергии, при значительном световом потоке, излучаемом в процессе работы.
  • Продолжительные сроки эксплуатации, в разы превышающие сроки у аналогов (лампы накаливания и энергосберегающие лампы).
  • Возможность управлять уровнем освещенности и его качеством, посредством установки специальных устройств, диммеров.
  • Экологическая и пожарная безопасность подобных светильников, как для человека, так и для окружающей среды.
  • Способность создавать качественное освещение, без пульсаций, вне зависимости от качества напряжения и тока в питающих линиях.
  • Широкий диапазон рабочих температур и стойкость к внешним воздействиям.
  • Простота установки и обслуживания.
  • Разнообразие форм и конструкций, позволяет использовать для различных видов освещения.

Кроме перечисленных достоинств, которых достаточно много, есть и ряд недостатков, это:

  • Высокая стоимость – главный недостаток подобных устройств.
  • В процессе эксплуатации световой поток уменьшается, что снижает качественные показатели освещения.
  • При выходе одного из светодиодов, установленных в конструкции модели, выходит из строя все устройство, что требует его полной замены.

Расчет освещенности

Для расчёта необходимого количества осветительных приборов существует две основные формулы – простая и сложная, дающая более точный расчёт. На практике достаточно простой формулы. Она не требует серьёзных знаний и вполне решаема даже без калькулятора.

Шаг первый – рассчитать величину светового потока, требуемого для помещения (измеряется в Люменах).

Для этого стоит прибегнуть к простой формуле А * B * C, где:

  1. Норма освещённости выбранного объекта.
  2. Площадь объекта.
  3. Коэффициент высоты потолков. При высоте потолков от 2.5 до 2.7 метров он равен 1, от 2.7 до 3 метров – 1.2, от 3 до 3.5 метров – 1.5 и от 3.5 до 4.5 метров – равен 2.

Вторым шагом будет расчёт нужного количества ламп и их мощности. Для этого необходимо разделить полученное в первых расчётах число на величину светового потока указанную на лампах в подобранных осветительных приборах

При этом важно помнить, что чем больше используется приборов, тем равномернее освещение

Пример расчёта 1

Дано: жилая комната площадью 20 квадратных метров с потолком высотой 2.7 метра и осветительными приборами, оснащёнными лампочками накаливания мощностью 60 Вт.

Сначала рассчитываем необходимый световой поток для данного помещения:

150 * 20 * 1 = 3000 Люмен.

Затем узнаем необходимое количество ламп для нормальной освещённости комнаты. Для этого сначала надо уточнить световой поток 60 Вт лампочки накаливания. В среднем они выдают от 600 до 800 Люмен.

Возьмём среднее значение в 700 Люмен:

3000 : 700 = 4.28571

Округляем в большую сторону – до 5 – это и будет необходимым количеством осветительных приборов, оснащённых одной лампочкой. Мощностью 60 Вт. Но стоит иметь ввиду, что большее количество менее мощных ламп позволяет получить более равномерную засветку.

Более сложная, но с этим и более точная формула требует перед началом расчётов собрать некоторое количество данных:

  1. Первым делом надо измерить комнату, для которой рассчитывается освещение. Необходимы такие параметры, как высота, длина и ширина комнаты.
  2. Затем по нормативам необходимо определить коэффициент отражения стен, потолка, и пола.
  3. Следующим шагом будет нахождение коэффициента применения. Для этого рассчитывается расстояние от рабочей поверхности до светильника. Также на этом этапе необходимо определиться с типом и мощностью установленной в нём лампочки.
  4. По таблице из СНиП определяем норму освещённости помещения.

Рассчитываем площадь помещения (S):

S = a * b

где:

a – длина помещения;

b – ширина помещения.

Рассчитываем индекс помещения (Ф):

Ф = S / (( h1 – h2 ) * ( a + b ))

где:

h1 – высота от пола до потолка;

h2 – высота от рабочего места до потолка.

Рассчитываем количество осветительных приборов (N):

N = ( E * S * 100 * Кз ) / ( У * p * Fi )

где:

E – освещённость помещения;

S – площадь помещения;

Кз – коэффициент запаса;

У – коэффициент использования ламп;

p – количество ламп;

Fi – поток света одной лампы.

Необходимый уровень освещения в разных комнатах

Пример расчёта 2

Дано: жилая комната размером 9 на 6 метров с потолком высотой 3.2 метра. Осветительными приборами были выбраны четыре люминесцентные лампы по 18 Вт каждая. Расстояние от рабочей поверхности до пола 0.8 метра, коэффициент запаса – 1.25, коэффициент отражения пола равен 10, стен – 30, потолка – 50.

Производим расчёт площади:

S = 9 * 6 = 54 кв. м

Далее узнаём индекс помещения:

Ф = 54 / (( 3.2 – 0.8 ) * ( 6 + 9 ) = 1.5

Коэффициент использования ламп в жилых комнатах – У – равен 51.

Производим дальнейшие, окончательные расчёты:

N = ( 300 * 54 * 100 * 1.25 ) / ( 51 * 4 * 1150 ) = 8.63

Всегда округляем в большее число – получаем 9. Это и есть необходимое для правильной организации освещения количество ламп.

2. Ен — нормированная освещенность

Измеряется в Люксах (Лк), является нормированной величиной, прописанной в своде правил строительной документации СНиП. Ниже представлена таблица норм освещенности.

Таблица №1. Рекомендуемые нормы освещенности жилых помещений, согласно СНиП 

Помещение нашего примера — жилая комната. Согласно таблицы №1 нормируемая освещенность для данного вида помещений равна 150 Люкс (Лк).

Ен = 150

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * S * k * z) / (N * η * n)

Это интересно: Панели для кухонного гарнитура — разъясняем детально

Расчет освещения. Формула

Для правильной организации освещения дома недостаточно выбора мест, где будут расположены светильники. Нужно еще и правильно выбрать тип светильников и мощность ламп для них. Для этого выполняется расчет освещенности.

Существуют нормы для освещенности типовых помещений или освещаемых объектов в них. В читальном зале библиотеки, операционной, школьном кабинете света нужно больше, чем в коридоре, парадной или ванной. Для количественной оценки при расчетах используется физическая величина – освещенность, измеряемая в люксах.

Единица измерения освещенности – 1 (лк, lx). Второй физической величиной, используемой при расчетах освещенности, является световой поток, измеряющийся в (лм, lm). Они связаны друг с другом так: если на поверхность, площадью 1 м 2 падает световой поток в 1 лм, то ее освещенность будет равна – 1 лк.

Главная цель расчетов – создание комфортного для глаз уровня освещенности на рабочей поверхности. При недостаточной или избыточной освещенности глаза будут напряжены при работе, больше уставать и с годами зрение ухудшится.

Как сделать расчет необходимого уровня освещенности?

Приблизительно расчетную мощность источников света можно подсчитать по формуле:

P=pS/N, где

P (Вт/м 2 ) – удельная мощность освещения, зависящая от типов помещений и ламп. Наиболее часто используемые значения p приведены в таблице.

Тип помещения Лампа накаливания Галогенная лампа Лампа дневного света
Детская комната 30-90 70-80 18-22
Гостиная 10-35 25-30 7-9
Спальня 10-20 14-17 4-5
Коридор 10-15 11-13 3-4
Кухня 12-40 30-35 8-10
Ванная комната 10-30 23-27 6-8
Кладовая, гараж 10-15 11-13 3-4

S (м 2 )- площадь помещения;

N – количество светильников.

Из формулы видно, что большее количество светильников создают большую освещенность на той же площади при меньшей мощности ламп в них. Каждый источник света имеет свой световой поток. При одинаковой электрической мощности световой поток у ламп накаливания меньше, чем у люминесцентных, энергосберегающих, светодиодных, так как они работают на разных физических принципах. Этим и объясняется экономия электроэнергии: уровень освещенности, создаваемый лампой накаливания в 100 Вт, получается при использовании люминесцентной лампы 18 Вт.

Это – упрощенный вариант расчета, не учитывающий несколько важных факторов:

— расстояния от светильника до освещаемой поверхности. Освещенность уменьшается с квадратичной зависимостью от расстояния до светильника.

— конфигурации светильников. Некоторые светильники имеют отражатели, направляющие часть светового потока вниз. При отсутствии отражателей его функцию выполняет потолок. Чем больше его отражающая способность, тем большая часть светового потока будет перенаправлена.

— наличия естественного освещения. Чем больше оконных проемов, тем меньше нужно искусственного света.

— цвета и материала стен, напольных покрытий, влияющего на ощущения человеком освещенности.

Для упрощенных расчетов можно воспользоваться зависимостью освещенности от площади помещения, приведенной в таблице.

Площадь помещения Очень яркий свет Яркий свет Мягкий свет
кв.м. 500 лк 300 лк 150 лк
менее 6 150W 100W 90W
6-8 200W 140W 80W
8-10 250W 175W 100W
10-12 300W 210W 120W
12-16 400W 280W 160W
16-20 500W 350W 200W
20-25 600W 420W 240W
25-35 700W 490W 280W

Здесь уже подобраны оптимальные значения мощности ламп накаливания, установленных по центру помещения. Требуемую мощность нужно уменьшить в 5-7 раз при использовании люминесцентных ламп и в 10 раз — для светодиодных. Более точные значения можно определить по упаковке лампы, на которой производитель указывает, какой мощности лампы накаливания соответствует данный световой прибор.

Как измерить уровень освещенности?

Для измерения фактического уровня освещенности используют специальный прибор –люксметр. Он состоит из фотодатчика с набором светофильтров и измеряющего устройства. Принцип работы люксметра состоит в измерении сопротивления фотодатчика, изменяющегося при разном уровне освещенности. Светофильтры предназначены для изменения пределов измерений прибора.

Порядок измерений освещенности люксметром:

  1. Выбираем пределы измерений фотодатчика.
  2. Размещаем фотодатчик на поверхности, на которой требуется измерить освещенность.
  3. Включаем прибор.
  4. Снимаем показания
  5. Выключаем прибор

Применение люксметра позволяет узнать, соответствует ли фактический уровень освещенности требованиям, указанным, например, в . А при несоответствии – выработать меры для приведения освещенности в требуемые пределы.

Коэффициент запаса

В системах искусственного освещения в течение времени эксплуатации происходит снижение освещенности в результате:

  1. спада светового потока ламп вследствие их старения (ресурс);
  2. выхода из строя ламп в течение срока эксплуатации;
  3. загрязнения оптической системы светильников;
  4. загрязнения светопропускающих поверхностей источников света;
  5. спада КПД светильников вследствие старения светоотражающих и светопропускающих (УФ воздействие на полимеры) материалов;
  6. изменения температуры окружающей среды (необходимо учитывать для светодиодов, компактных люминесцентных ламп, и люминесцентных ламп. (Раньше этот показатель в литературе не указывался, потому что эти типы источников света для улицы не допускались, а в помещении перепад температур значительно меньше).

Значения коэффициента запаса для осветительных установок искусственного освещения могут быть снижены в зависимости от эксплуатационных групп светильников. Эксплуатационная группа светильника определяется конструктивно-светотехнической схемой светильника, типом материала или покрытия отражателя и рассеивателя светильника, типом используемого источника света. 1. Светодиодные светильники производятся серийно с 2004 года. За это время практическую наработку более 6 лет имеют уже свыше 7000 серийных изделий, причем эксплуатация их продолжает сегодня.

Были проведены замеры освещенности светильников в начале эксплуатации на объектах различного применения. Применяемые в светильниках высокачественные светодиоды Nichia (Япония) не подверглись деградации и сохранили свои технические параметры, соблюдены все условия эксплуатации их в готовых изделиях. Специально разработанные конструкции светильников обеспечивают необходимый теплоотвод светодиодов, что еще существенно повышает их ресурс. Данное снижение освещенности у светодиодных светильников УСС отсутствует, это доказано практически и подтверждено исследованиями многочисленных лабораторий.

Тип лампы Параметры освещенности лк, потери
1 год 2 год 3 год
ДРЛ — 30 — 50 % — 50 -90%
ДНАТ — 20% — 10 — 30 %
Светодиодный модуль Отсутствуют Отсутствуют отсутствуют

Результаты исследований за 3 года работы 2. Практически доказано, у светодиодных светильников отсутствует выход из строя светодиодного модуля, ресурс модуля более 23 лет. Выход из строя ламп (светодиодов) в течение срока эксплуатации у светодиодных светильников отсутствует, соответственно это при расчетах учитывать не надо.

3. Загрязнение оптических систем у традиционных светильниках и у светодиодных существует. Этот параметр необходимо учитывать

Для светодиодных светильников важно качество оптического поликарбоната и оптики на светодиодах. Загрязнение пылью и грязью происходит только поликарбоната, оптика светодиодов защищена и находится под стеклом

Также есть светильники без оптики, у которых потери будут ниже. Для расчетов падения на оптических системах для светодиодных светильников следует учитывать только загрязнение защитного стекла. Опять же загрязнение зависит от места и условий эксплуатации светильников.

4. Загрязнения светопропускающих поверхностей источников света у светодиодных светильников отсутствует.

5. Спад КПД светодиодных светильников вследствие старения светоотражающих материалов отсутствует. Были произведены измерения освещенности на объектах после 3 лет работы. Параметры остались на уровне трехлетней давности, в диапазоне погрешности измерений нее более 5%.

Из данного сравнения видно, что для светодиодных светильников нужно убрать некоторые параметры падения светового потока, в следствии чего этот коэффициент уменьшится от традиционных значений.

В зарубежных нормах и стандартах для учета данного фактора используется коэффициент эксплуатации MF. С отечественным коэффициентом запаса он связан соотношением МF= 1/Кз. Из практики, для светодиодных светильников следует брать коэффициент запаса равным 1 — 1,1 для программы DIALux.

Внимание: Данный коэффициент выведен только для светильников. Для изделий других производителей светодиодных светильников, пониженный коэффициент не известен

Для определения коэффициента необходимо учитывать: токи на светодиодах (степень разгона светодиодов, если это существует); температуры кристаллов; наличие радиаторов; наличие защитного стекла; степень защиты от пыли и влаги; место эксплуатации.

Метод коэффициента использования

Освещение > Расчет освещения по методу коэф-та использования и удельной мощности

МЕТОД КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ

При расчете по методу коэффициента использования потребный поток ламп в каждом светильнике Ф находится по формуле

где Е – заданная минимальная освещенность, лк; k – коэффициент запаса; S – освещаемая площадь, м2; z – отношение Еср:Емин; N – число светильников (как правило, намечаемое до расчета); h – коэффициент использования в долях единицы.В таких помещениях, как конторы, чертежные и некоторые другие, где положение работающего строго фиксировано и создает частичное затенение, следует вводить в знаменатель формулы (5-1) коэффициент затенения около 0,8, но пока это еще не общепринято.

По Ф выбирается ближайшая стандартная лампа, поток которой не должен отличаться от Ф больше чем на -10. +20% . При невозможности выбора с таким приближением корректируется N. При однозначно заданном Ф (люминесцентные светильники, предназначенные для определенных ламп, маломощные светильники, использование которых целесообразно с лампами наибольшей возможной мощности) формула решается относительно N. При всех заданных других величинах формула может быть использована для определения ожидаемой Е.При расчете люминесцентного освещения чаще всего первоначально намечается число рядов и, которое подставляется в (5-1) вместо N. Тогда под Ф следует подразумевать поток ламп одного ряда.При выбранном типе светильника и спектральном типе ламп поток ламп в каждом светильнике Ф1 может иметь всего 2-3 различных значения. Число светильников в ряду N определяется, как

Суммарная длина N светильников сопоставляется с длиной помещения, причем возможны следующие случаи:а. Суммарная длина светильников превышает длину помещения: необходимо или применить более мощные лампы (у которых поток на единицу длины больше), или увеличить число рядов, или компоновать ряды из сдвоенных, строенных и т. д. светильников.б. Суммарная длина светильников равна длине помещения: задача решается устройством непрерывного ряда светильников.в. Суммарная длина светильников меньше длины помещения: принимается ряд с равномерно распределенными вдоль него разрывами l между светильниками.Из нескольких возможных вариантов на основе технико-экономических соображений выбирается наилучший.Рекомендуется, чтобы l не превышало примерно 0,5 расчетной высоты (кроме многоламповых светильников в помещениях общественных и административных зданий).Входящий в (5-1) коэффициент z , характеризующий неравномерность освещения, является функцией многих переменных и в наибольшей степени зависит от отношения расстояния между светильниками к расчетной высоте (L:h), с увеличением которого сверх рекомендуемых значений z резко возрастает. При L:h, не превышающем рекомендуемых значений, можно принимать z равным 1,15 для ламп накаливания и ДРЛ и 1,1 для люминесцентных ламп при расположении светильников в виде светящих линий. Для отраженного освещения можно считать z =1,0; при расчете на среднюю освещенность z не учитывается.Для определения коэффициента использования h находится индекс помещения i и предположительно оцениваются коэффициенты отражения поверхностей помещения: потолка – , стен – , расчетной поверхности или пола – (см. табл. 5-1).

Почему светодиоды?

Еще несколько лет назад многие наши соотечественники стали использовать энергосберегающие лампы люминесцентного типа с цоколем E14 и Е27. Но теперь пришел черед более эффективным приборам — светодиодам, которые демонстрируют меньшее потребление энергии (по сравнению с лампами накаливания — в 10 раз, по отношению к люминесцентным осветительным приборам — в 3 раза).

Преимущества светодиодов

Неоспоримые преимущества светодиодных светильников обеспечили им популярность во всем мире. Такие лампы в разы эффективнее обычных ламп накаливания и приборов, излучающих люминесцентный свет.

Преимущества светодиодных ламп:

  •  экономия электроэнергии;
  •  создание света, максимально приближенного к дневному;
  •  возможность использования как внутри помещения, так и за его пределами (уличное освещение);
  •  более высокий размах напряжения — лампы будут работать в диапазоне от 80 до 230 Вольт;
  •  повышенный срок службы — до 25 лет;
  •  экологичность, поскольку они не выделяют в воздух вредных веществ;
  •  возможность управлять подсветкой при помощи ДУ-пульта;
  •  беззвучная работа в отличие от люминесцентных ламп.

Недостатками таких осветительных приборов можно считать повышенную цену и невысокий индекс цветопередачи, достигающий 85-90%.

Сравнительная характеристика лампы накаливания и светодиодной

Разница «в возрасте» этих типов ламп составляет почти сотню лет. Тем не менее, «старушка» с вольфрамовой нитью в колбе до сих пор остается самой востребованной на рынке.

Светодиодные лампы Navigator Filament

Давайте проведем небольшой сравнительный анализ основных технических характеристик двух типов ламп – накаливания и светодиодной. Ведь не только мощностью отличаются равные по световому потоку изделия.

Светоотдача

Светоотдача лампы определяется как отношение светового потока к мощности. Измеряется этот параметр в Лм/Вт. Светоотдача лампы накаливания колеблется в пределах 8-10 Лм/Вт. Ее светодиодный сородич имеет диапазон 90-110 Лм/Вт. Следовательно, эффективность последнего явно выше.

Цветовая температура

При проектировании освещения дома или офиса специалисты рекомендуют руководствоваться следующей таблицей:

Площадь помещения, кв. м

Требуемая мощность лампы, Вт

Накаливания

Светодиодная

Менее 6 150 18
10 250 28
12 300 33
20 500 56
30 700 80

Теплоотдача

Не менее важной характеристикой, подлежащей сравнению, является теплоотдача от изделия. Лампы накаливания могут разогреваться до 250 градусов. Лампы накаливания могут разогреваться до 250 градусов

Лампы накаливания могут разогреваться до 250 градусов.

Правда, в основном этот параметр держится в пределах 170 градусов.

Разогретая стеклянная колба является потенциальным источником пожара, поэтому при монтаже осветительной сети в деревянном доме использовать традиционную лампочку не рекомендуют.

В этом плане светодиодная ламп находится в более выигрышном положении: она может нагреться не выше 50 градусов. Следовательно, никаких ограничений в ее применении не существует.

В этой статье речь идет об общих случаях. Для помещений категории повышенной взрыво-пожароопасности выпускаются соответствующая продукция, имеющая высокую степень защищенности.

Срок службы

Светодиодные лампы характеризуются отменной живучестью. Производители утверждают, что прослужить их изделие может более 50 тысяч часов. Лампы накаливания живут намного меньше – всего 1000 часов. Поэтому гораздо выгоднее один раз купить дорогую лампочку, которая прослужит несколько лет, чем каждые 3 месяца менять дешевую.

Типы светодиодных ламп

Однако долговечность светодиода не отражает одного прискорбного факта: со временем интенсивность его свечения снижается. Примерно через 4000 часов работы свет от него заметно потускнеет.

Деградация светодиода тем выше, чем ниже его качество. Много нареканий в этом плане возникает у потребителей к китайской продукции.

КПД

Коэффициент полезного действия ламп освещения говорит о том, какой процент потребленной электроэнергии превращается в свет, а какой – в тепловую энергию. КПД светодиодов составляют примерно 90%, лампа накаливания может похвастаться лишь семью-девятью процентами.

Thomson Filament — светодиодные лампы нового поколения

Цена

В интернете бурно спорят противники и сторонники светодиодов. Предмет их спора – стоимость. Ведь стоят светодиодные лампы более чем в 10 раз выше обычных. В пользу первых говорит малая мощность, а, следовательно, низкое энергопотребление.

Для наглядности сведем показатели экономичности ламп разного типа в таблицу:

Наименование показателя Лампа накаливания Люминесцентная  Светодиодная 
Мощность, Вт 60 12 5
Стоимость изделия, руб. 30 150 300
Энергопотребление за год, кВт*ч 175 35 14
Стоимость потребленной энергии*, руб./год 526 105 44

Таблица составлена на основе следующих исходных данных: в среднем лампочка горит около 8 часов в сутки или 8 х 365 = 2920 часов; стоимость 1 кВт*ч принята за 3 рубля.

Из таблицы видно, что даже без учета долговечности ламп светодиодная по сравнению с лампой накаливания занимает явно выигрышное положение.

Прочие характеристики

  • силе тока;
  • механической прочности;
  • цветовой температуре и некоторым другим показателям.

Давайте сравним две лампы:

  • светодиодную мощностью 9 Вт;
  • накаливания на 60 Вт.

Результаты сравнения сведем в таблицу:

Наименование параметра Светодиодная, 9 Вт Накаливания, 60 Вт
Сила тока, А 0,072 0,27
Эффективность светоотдачи, Лм/Вт 53,4 10,3
Световой поток, Лм 454,2 612
Цветовая температура, К 5500-7000 2800
Рабочая температура, С 70 180
Чувствительность к низким температурам отсутствует Присутствует у некоторых ламп
Чувствительность к влажности отсутствует Присутствует у некоторых
Механическая прочность Высокая – можно трясти Низкая – при сотрясении может оборваться нить или лопнуть стекло
Тепловое излучение, БТЕ/ч 3,4 85

Все вышеприведенные таблицы позволяют составить общее представление о преимуществах и недостатках светодиодов и лампочек накаливания.

Расчёт освещения

Расчёт освещения

Метод коэффициента использования

Метод коэффициента использования даёт возможность опреде­лить световой поток ламп, необходимый для создания заданной средней освещённости при общем равномерном освещении с учётом света, отражённого стенами и потолком.

Расчётные формулы:

где F —световой поток ламп, лм;

Е — минимальная освещённость, лк;

k — коэффициент запаса;

η — коэффициент использования светового потока ламп (в долях единицы), т. е. отношение потока, падающего на расчётную поверхность, к суммарному световому потоку всех ламп;

S —площадь помещения, м2;

z — отношение средней освещённости к минимальной (коэффи­циент z вводится только при расчёте минимальной осве­щённости);

п — число светильников.

Коэффициент использования зависит от характеристики светиль­ника (светораспределения и к. п. д.), размеров помещения и коэф­фициентов отражения стен и потолков.

Значения коэффициентов использования для различных све­тильников с лампами накаливания находятся по таблицам, имею­щимся в каталогах на осветительные приборы.

Коэффициенты, отражения стен ρc и потолка ρn приведены в следующей таблице:

Размеры помещения характеризуются следующим показателем (индексом) помещения:

где h — расчётная высота подвеса светильника над рабочей по­верхностью, м;

S —площадь помещения, м2;

А и В — стороны помещения, м.

Величина коэффициента z зависит от типа светильника и отно­шения L к h; L — расстояние между светильниками, м; h — расчётная высота подвеса светильника, м.

Значения коэффициентаz

Расчёт освещения но методу коэффициента использования про­изводится в следующем порядке:

1) находим по таблице нормативную освещённость для данного помещения;

2) выбираем тип и число светильников;

3) определяем индекс помещения iи коэффициенты отражения потолка (ρп ) и стен ( ρс).

4) находим коэффициент z (только при расчёте на минималь­ную освещённость);

5) определяем коэффициент использования светового потока для принятого типа светильника;

6) вычисляем световой поток F одной лампы в лм и по нему выбираем лампу, световой поток которой близко подходит к рас­чётному.

Пример расчёта

Дано: конторское помещение площадью 20 × 6 м, высотой 3,2 м; потолок побелённый, стены светлые, окна без штор.

Расчётная высота подвеса светильника h=2 м, напряжение се­ти 220 в; коэффициент запаса k=1,3.

1) Для конторского помещения E = 75 лк.

2) Берём 16 светильников типа «Люцетта» цельного стекла, рас­полагаемые в два ряда; расстояние между светильниками равно 3 м.

3) Находим индекс помещения

По таблице определяем коэффициенты отраже­ния потолка и стен: ρп =70%; ρс=50%.

4) При отношении L : h = 1,6 коэффициент z = 1,2.

5) Зная i, ρn и ρс находим для светильника «Люцетта» коэффи­циент использования η = 0,5.

6) Определяем световой поток одной лампы

По таблице выбираем лампу накаливания мощ­ностью 150 вт, имеющую световой поток 1845 лм.

Метод удельной мощности

Метод удельной мощности — наиболее упрощённый способ рас­чёта освещения.

Удельная мощность, т. е. мощность ламп, отнесённая к единице площади, вт /м2 — важный показатель осветительной установки, он может служить, в однотипных условиях, критерием для определе­ния мощности ламп.

Инженером Кноррингом были составлены таблицы значений удельной мощности в зависимости от освещённости, типа светильни­ка, высоты подвеса и площади помещения для напряжения сети 220 в и коэффициента запаса k=1,3.

Пользуясь таблицами, можно подсчитать установленную мощ­ность осветительной установки, для чего значение удельной мощно­сти (р), найденное для конкретных условий, необходимо умножить на площадь помещения.

Мощность каждой лампы находят делением общей установлен­ной мощности на принятое количество ламп.

Точечный метод

Точечный метод расчёта, основанный на известном соотноше­нии между освещённостью Е и силой света I, довольно кропотлив и применяется в основном только для определения минимальной освещённости локализованного и местного освещения, для опреде­ления освещённости ответственных помещений и для проверочные расчётов.