Равны ли 6 ватт светодиода и лампы накаливания?

Содержание

GaN транзисторы

Один из надежных способов достичь желаемого уровня плотности мощности — использовать улучшенные транзисторы или ИС. Те, которые сделаны из нитрида галлия (GaN), особенно хорошо работают в режиме импульсного источника питания. Эти устройства могут работать на гораздо более высоких частотах с незначительным снижением эффективности или без него. Потери в GaN-устройствах намного меньше, чем у кремниевых или даже SiC-устройств, что позволяет им работать на гораздо более высоких частотах.

Сочетание устройств на основе GaN с инновационным корпусом существенно увеличит удельную мощность. Одним из таких примеров является корпус HotRod QFN от Texas Instruments. Он снижает паразитные индуктивности, связанные с более традиционными корпусами. Дополнительным ключом к лучшему снижению нагрева являются выступы на некоторых корпусах на целой пластине (WCSP) — они передают большую часть тепла печатной плате (PCB) для более быстрого его отвода и распространения в пространстве.

Дополнительный выигрыш в плотности мощности является результатом инновационных разработок, таких как улучшенные драйверы затвора и новые топологии преобразователей. Один из самых больших преимуществ — это увеличенная интеграция схем. Размещение большего количества компонентов и схем в небольшом корпусе значительно увеличивает удельную мощность.

Одним из таких примеров является интеграция схемы драйвера затвора в корпус GaN FET. При разработке многокристальных модулей с двумя или более кристаллами в корпусе удельная мощность будет расти. Включение пассивных компонентов в корпус ИС — еще один метод интеграции, который создает меньше паразитных помех и снижает электромагнитные помехи. Наконец, трехмерное наложение компонентов также дает желаемый выигрыш. Хотя уменьшение занимаемой площади блока питания или печатной платы преобразователя полезно, не забывайте учитывать доступное вертикальное пространство.

В заключение, улучшения плотности мощности могут быть достигнуты за счет сбалансированного сочетания методов, которые включают снижение коммутационных потерь, улучшение тепловых характеристик за счет лучшей «упаковки деталей в корпус» и увеличение степени интеграции. Помня о концепции плотности мощности при проектировании следующего блока питания или схемы питания, вы автоматически добьетесь повышения эффективности, охлаждения и меньшего размера.

Как рассчитать коэффициент мощности светильника

25.06.2018

Ежегодно во всем мире делаются разнообразные открытия, которые впоследствии предоставляют возможность намного упростить жизнедеятельность человечества. Одним из важнейших моментов современного человека является оплата коммунальных услуг. Не последнее место в этих платежах занимает электричество.

Не всегда получается расходовать электрическую энергию меньше собственных потребностей. С появлением светодиодной технологии освещения появилась возможность платить за электроэнергию гораздо меньше, при этом использовать свет в необходимом количестве.

Все это благодаря малой мощности светодиодных светильников, при которой они излучают аналогичный световой поток, к примеру, стандартных лампочек накаливания, мощность которых в разы больше.

Особенности, технические параметры светодиодного источника света

LED лампы на сегодняшний день активно вытесняют с рынка светотехнической продукции прочие световые источники. Они намного эффективнее и экономичнее в плане расходования электрической энергии, а также отличаются наиболее максимальным сроком эксплуатации.

Важно! Светодиодные элементы – это световые источники современного поколения, которые принципиально отличаются от стандартных лампочек с нитью накаливания и люминесцентных моделей светотехники

Преимущества led осветителей

  • Достаточно продолжительный эксплуатационный период.
  • Безопасность использования.
  • Повышенная удельная мощность.
  • Высокая энергетическая эффективность.
  • Не представляют опасности для экологии окружающей среды.
  • Высокий коэффициент цветовой передачи.

Важно! Единственный минус лед-светотехники – это высокая цена изделия. Поэтому многие пользователи еще пока отдают предпочтение более дешевым источникам света

Но если разобраться, то светодиодные светильники благодаря значительной экономии электрической энергии и продолжительному сроку эксплуатации полностью окупаются.

Характеристики LED источников света

  • Мощность светильника – от 1 Вт.
  • Напряжение – 170-240 В.
  • Световая передача – 88,8 Лм/Вт.
  • Цветопередача – теплый, белый холодный световой поток.
  • Цветовая температура – 2700 К.
  • Поток света – 800 Лм.
  • Эксплуатационный период – порядка 50 тысяч часов.

Важно! Основной параметр, по которому необходимо ориентироваться, покупая светодиодные приборы освещения – это мощность светового источника и коэффициент мощности, который также называют – косинус «Фи»

На что нужно обращать внимание при покупке ЛЕД оборудования

При замене в квартире или частном доме осветительной системы, организованной на основе потолочных люстр, настенных бра и прочих световых устройствах, на которых в качестве светового источника выступают лампочки накаливания, стоит учитывать мощность светодиодных изделий, а также ее коэффициент. Это базовые показатели освещения.

К сведению! Лампы разного типа, имеющие одинаковые характеристики, способны излучать абсолютно разный световой поток, в том числе и светодиодные светильники разных производителей.

Сравнительная таблица потока света разных типов световых источников

Лампа накаливания, Вт Люминесцентная, Вт Светодиодная, Вт Световой поток, Лм
25 16 5,5 250
40 22 8 400
60 30 11 630
75 36 15 900

Этот параметр предоставляет возможность понять, сколько электрической энергии будет расходовать светотехническое оборудование, что важно при смене одной осветительной системы на другую

Таблица эквивалентности мощностей разных световых источников

Лампа накаливания, Вт Люминесцентная, Вт Светодиодная, Вт
15 3 1
35 7 3
50 11 5
70 15 7
90 19 9
120 25 12

Как видно из таблицы, при использовании ЛЕД осветителей мощностью всего лишь 5 Вт интенсивность освещения будет аналогична стандартной лампочке накаливания на 50 Вт. Соответственно, можно подсчитать возможную экономию электрической энергии.

К сведению! Все показатели, представленные в таблице, являются усредненными значениями. У разных производителей могут быть небольшие отклонения от этих цифр.

Также, чтобы понимать выгоду светодиодных источников, можно сравнить их эффективность светового излучения с лампами накаливания: LED – 100 Лм/Вт, ЛН – 12 Лм/Вт.

Понятие об установленной и расчетной мощности

Установленная мощность соответствует номинальным величинам и является фиксированным техническим показателем установки или системы. Для предприятий ее можно регулировать, например, снятием с эксплуатации части электроустановок. Данная величина применяется для характеристики:

  • отдельного предприятия и здания;
  • отраслевой группы;
  • географической области и всей страны.

Под значением установленной мощности понимается активный мощностной показатель или полный.

Одним из основополагающих факторов во время проектирования электрической установки является расчет мощности, необходимой для долговременной и бесперебойной ее работы. Когда определяют, что такое расчетная мощность, имеют в виду именно эту величину.

Значения установленной и расчетной мощности связаны между собой при выполнении различных проектных работ. Величина расчетной мощности обычно определяется на основе установленной мощности (т.е. суммы номинальных мощностей потребителей электроэнергии, имеющихся в рассматриваемой части электроустановки) после принятия определенных коэффициентов для одновременного включения этих нагрузок.

Пиковая мощность – это самая высокая средняя загрузка, измеренная или рассчитанная за определенный промежуток времени (например, в течение дня, недели, месяца, года). Чаще всего период охватывает один год.

Важно! Пиковый мощностной показатель является основой для выбора энергетического оборудования с точки зрения нагрева рабочим током, определяет настройки применяемой защиты. На этапе проектирования обычно предполагается, что расчетная мощность равна пиковой, и берется фиксированный коэффициент мощности

На этапе проектирования обычно предполагается, что расчетная мощность равна пиковой, и берется фиксированный коэффициент мощности.

Расчетная мощность определяется, исходя из следующих зависимостей:

максимальный расчетный ток:

I = P /√3 х U cos φ.

  • tg φ = Q/Р;
  • расчетная общая мощность:

S = √(Р² + Q²).

Базовая характеристика светодиодного источника света

Осуществляя замену старых моделей на светодиодные лампочки, первое, на что следует обратить внимание, будет мощность (удельная) и ее коэффициент. Эти параметры для освещения являются базовыми

Для того, чтобы эффективно определить мощность и ее коэффициент, на упаковке приведена таблица с перечнем технических характеристик.

Две лампы, имеющие одинаковый показатель, могут обладать различным световым потоком, а также углом рассеивания и цветовой температурой. Все этим параметры содержит в себе таблица, указанная на упаковке любых видов ламп. Под световым потоком понимается мощность излучения (сколько света излучает), которое дает источник света во всех направлениях. Ниже представлена таблица, в которой приведены средние значения светового потока разных ламп.

Световой поток различных ламп

Как видим, данный параметр даст возможность оценить, сколько электроэнергии потребляет источник света

Это очень важно знать при замене одного типа освещения на другой. Для того чтобы правильно определить (m) светового потока и сколько потребляет выбранная модель, существует следующая таблица

Из таблицы видно, что при использовании светодиодных ламп на 3 Вт, их светоотдача будет соответствовать лампам накаливания на 25 Вт. Из этой таблицы также видно, сколько экономии в плане потреблении электроэнергии может принести даже самый маломощный источник света.

Особенности и главные технические характеристики

Светодиодные лампочки сегодня активно вытесняют другие типы ламп из повседневного обихода. Ведь они эффективнее остальных источников света. Для светодиодных ламп характерна сама высокая энергоэффективность. Это означает, что такие лампочки потребляют гораздо меньше электроэнергии, чем их предшественники.

Преимущества светодиодных лампочек заключается в следующем:

  • высокая удельная мощность;
  • длительный период службы;
  • высокая энергоэффективность;
  • отличный коэффициент цветопередачи;

Коэффициент цветопередачи LED

  • экологичность;
  • безопасность эксплуатации.

Но здесь имеются и минусы, которые заключаются в достаточно высокой стоимости светодиодных осветительных изделий. Поэтому такие лампочки пока еще полностью не вытеснили менее эффективные по мощности и качеству освещения источники света. Для LED характерны следующие характеристики:

  • мощность – от 1 ВТ;
  • световая отдача – 88,8 Лм/Вт;
  • напряжение – 170-240 В;
  • цветовой эффект – теплый или холодный белый/желтый свет;
  • световой поток – 800 Лм;
  • t0 нагрева – 2700 К;
  • длительность (средняя) работы – 40000 ч.

Драйверы для светодиодных источников света ON Semiconductor

В статье сделан обзор драйверов светодиодов компании ON Semiconductror. В первую очередь рассматриваются новые типы продукции, которые появились в номенклатуре светодиодных драйверов ON Semi в этом году.

2 марта

а, темп развития светодиодных технологий, который часто любят характеризовать таким параметром как рост световой отдачи, впечатляет. Средний прирост этого показателя для серийно выпускаемых светодиодов за последние пять лет составляет около 13…15 лм/Вт в год. Однако, на сегодняшний день световая отдача светодиодов, применяемых в серийных уличных светильниках еще не превысила этот показатель для натриевых ламп высокого давления — самого распространенного источника света для уличного освещения. Тогда в чем энергоэффективность светодиодных светильников?

Энергоэффективность светильника

Для оценки энергоэффективных свойств осветительного прибора необходимо провести анализ по четырем параметрам:

1) световая отдача источника света;

2) КПД светильника;

3) электрический КПД светильника (потери в блоке питания, ПРА);

4) коэффициент использования светового потока.

Световая отдача светодиодов не превышает этот показатель для традиционных источников света в уличных светильниках, поэтому для экономии электроэнергии необходимо, чтобы значения остальных параметров были больше чем у существующих осветительных приборов.

В двух словах отметим, что КПД блока питания светодиодов и ПРА для газоразрядных ламп примерно одинаковы и равны для большинства образцов 80—85%.

КПД самого светильника (отношение светового потока светильника к световому потоку источников света) зависит от материалов отражателей, рассеивателей и линз. В существующих светильниках с газоразрядными лампами и в светодиодных применяются однотипные материалы, поэтому получить выигрыш более 10—20% в КПД практически не реально. Заметим, что КПД уличного светильника с натриевой лампой высокого давления для большинства образцов довольно высокий. Например, светильники ЖКУ28-150-001, ЖКУ21-150-003, ЖКУ15-150-101Б и др. объединения Galad имеют КПД более 74%. При улучшении этого показателя на 20% получим значение 89%, что сопоставимо с коэффициентом пропускания защитных стекол и рассеивателей из полиметилметакрилата, поликарбоната, стекла . В этом случае мы получаем светильник, светораспределение которого формируется расположением самих светодиодов без дополнительных отражателей, линз, ограждающих конструкций защитного угла, что для уличного светильника крайне проблематично.

Основные показатели

Мы провели соответствия светодиодных ламп и ламп накаливания, чтобы наглядно продемонстрировать основные характеристики в действии:

  • В первую очередь необходимо помнить, что светодиодные Led лампы не мерцают. Поэтому их использование не вредит зрению человека;
  • Также при их производстве не используются вредные вещества;
  • Кроме этого, светодиоды представляют собой неразборную конструкцию, которая устойчива к сильным вибрациям и ударам, в отличие от ламп накаливания;
  • Срок службы светодиодов составляет в среднем 50 000 часов, а у лампы накаливания — 1000.
  • В конструкции светодиодов нет нитей накаливания, которые способствуют перегреву. Зачастую в них установлены эффективные системы охлаждения, которые позволяют устройству остывать быстрее.

Другие параметры – примерно как у ламп накаливания. Например, светодиоды не выделяют ртутные пары, что не наносит вред окружающей среде.

Сегодня существует большое количество разнообразных ламп, которые делятся по форме и покрытию колбы, назначению и наполнителю. Бывает шарообразной, цилиндрической, трубчатой и шароконической; прозрачной, зеркальной и матовой. Также есть световые источники общего, местного и кварцевогалогенного назначения. Кроме того, имеются вакуумные, аргоновые, ксеноновые, криптоновые и галогенные модели.

Прозрачные являются распространенными вариантами. Такие элементы считаются самыми дешевыми и эффективными, имеют неравномерный светопоток. Зеркальные модели являются наиболее результативными в плане освещения, поскольку покрытие формирует направленные светопоток. Матовые способны создавать мягкое и рассеивающее освещение для благоприятных условий работы и отдыха. Изделия, имеющие местное освещения, функционируют при двенадцати вольтном напряжении, что нужно, чтобы создать безопасные условия труда.

Обратите внимание! Подобные светильники нужны, чтобы освещать смотровые ямы в момент монтажа электрической гаражной проводки. Таблица типов ламп накаливания


Таблица типов ламп накаливания

Лампы общего назначения

Источники, имеющие общее назначения, самые массовые светоисточники, которые применяются, для того чтобы осветить квартиру или завод в сети с переменным током в 220 вольт и частотой до 50 герц. Бывают вакуумными, аргоновыми и криптоновыми. Эта же группа бывает неодимовой и криптоновой. По существу это обычные осветительные лампы. Стоит указать, что в момент изготовления неодимовых источников применяется неодимовая окись, поглощающая спектр света. Это улучшает световое качество.

Вам это будет интересно Особенности люминесцентной лампы


Повсеместное использование светильников общего назначения

Прожекторные лампы

Прожекторные источники ставятся на судовом, железнодорожном, театральном и другом прожекторе. Отличаются тем, что имеют увеличенный светопоток, могут быть дополнены светоотражателями, чтобы улучшать концентрацию светопучка.


Прожекторные светильники как один из видов

Зеркальные лампы

Зеркальные светоисточники отличаются тем, что имеют обычную форму колбы и специальное внутреннее покрытие балонной части. Это помогает собрать весь светопоток, который направлен в нужное русло. Они используются в промышленности, видеосъемке, фермерском хозяйстве и потолочном освещении ванной комнаты.

Галогенные лампы

Галогенные лампы работают от инертного газа, в который добавляется бром с йодом, чтобы защитить нить накаливания и повысить срок работы. Такие светоисточники обладают небольшим размером для применения их как наполнитель дорогостоящего инертного газа. Отличаются яркостью свечения, естественной цветопередачей, хорошим сроком службы и значительной световой отдачей, имеющей меньшие размеры.

Обратите внимание! Единственный минус в чувствительности и значительных перепадах сетевого напряжения

Требования и нормы

Рассмотрим требования и нормы к уровню естественной освещенности. Нормы такого освещения помещений разработаны как для бокового, так и верхнего размещения окон. Норма одностороннего бокового освещения определяется минимальной величиной КЕО на расстоянии одного метра от стены, которая в большей степени удалена от окна, а норма двустороннего освещения определяется внутри помещения цехов.

На естественное освещение производственных цехов влияет уровень загрязнения стекол световых проемов, так сильно загрязненные окна снижают коэффициент пропускания света, а загрязненные стены и потолочные перекрытия снижают коэффициент отражения.

Назначение света соответствующих участков солнечного спектра влияет по-разному на психологическое состояние человека. Холодные синие и фиолетовые оттенки спектра влияют угнетающе на состояние организма, желтовато-зеленый цвет действует успокаивающе, а оранжево-красные оттенки создают чувство тепла, и действуют стимулирующе.

Данные характеристики солнечного спектра применяют для обеспечения комфортных условий освещенности в эстетическом плане оформления помещения, окраске оборудования и поверхности стен.

Критерии выбора светильников

Светильники для производственных помещений должны размещаться и устанавливаться так, чтобы обеспечивались следующие условия:

  1. Безопасная и удобная доступность светильников для смены, вышедших из строя ламп;
  2. Обеспечивалась нормированная освещенность самым экономным способом (например, использование энергосберегающих ламп, светодиодных светильников);
  3. Соблюдались требования к качеству освещенности (одинаковый световой поток, направление света, исключение пульсаций света, блескости);
  4. Минимальная протяженность и удобный монтаж групповой сети;
  5. Высокое качество крепления потолочных светильников.

На выбор светильников влияют такие условия окружающей среды как содержание пыли, влажности, химически агрессивной среды, пожаро- и взрывоопасных участков, строительные характеристики здания (различная перепланировка, высота помещения, отражающие характеристики стен, потолочных перекрытий, пола и рабочих мест), указания к качественным характеристикам освещенности.

Подбор того или иного светильника производится на основании конструктивного исполнения, распределения светового потока и снижения слепящего эффекта, экономической обоснованности.

Потолочные диодные светильники промышленного назначения производители изготавливают без декоративных излишеств, такие лампы имеют строгую форму. Эти энергосберегающие светильники подходят для производственных помещений и торговых центров, масштабных по площади, и для промплощадок, открытых территорий.

Делаем правильный расчет

Правильный расчет производственного освещения обеспечивает повышение уровня эффективности производства, влияет положительно на психологическое состояние персонала, создает более безопасные условия труда, уменьшает уровень получения травм в ходе осуществления производственного процесса.

Таблица расчета освещенности

Самым часто встречающимся способом расчета искусственной освещенности считается способ расчета коэффициента использования светового потока. После расчета необходимого светового потока лампы по справочникам подбирают подходящую стандартную лампу и определяют, каково отклонение светового потока лампы от выполненного расчета. В случае если приближение по справочным данным не выполняется, то меняется количество осветительных приборов и схема их размещения.

Заключение

Существуют следующие виды производственного освещения: естественное, искусственное, комбинированное. Диодные потолочные светильники и применение энергосберегающих ламп предусматривают в помещениях, в которых не хватает естественных источников освещенности.

Расчет норм естественного освещения разработан для бокового и верхнего размещения окон. Норма одностороннего бокового освещения определяется минимальным значением КЕО на расстоянии одного метра от стены, которая в большей степени удалена от окна.

Для расчета искусственной освещенности чаще используется способ расчета коэффициента использования светового потока. После расчета которого по справочникам осуществляют подбор ламп.

Промышленные диодные светильники изготавливаются без излишнего декоративного оформления, форма ламп – строгая. Это пока единственная достойная альтернатива галогенному освещению и лампам накаливания.

Как перевести люксы в люмены

Однако, если известно нужное значение освещенности в люксах и площадь освещаемой поверхности, можно подсчитать требуемую величину светового потока в люменах. При этом следует понимать, что подсчет будет выполнен со многими допущениями, так как приблизить условия его выполнения к физически идеальным не представляется возможным. При подсчете следует принять, что:

  • источник света располагается в центре;
  • освещенность равномерна на всей площади, что практически невозможно;
  • на всю площадь поверхности свет падает под одинаковым углом;
  • поверхность освещается изнутри мысленной сферы, предполагаемой вокруг источника.

Для того, чтобы получить значение в люменах, нужно норму в люксах умножить на значение площади, нуждающейся в освещении.

Площадь пола и потолка составит: 10 х 10 = 100 м². Площадь каждой стены: 4 х 10 = 40 м². Теоретически с допущением на равномерное освещение и расположение источника, равноудаленного от всех точек поверхности, задача решается так: 300 лк х (4 х 40 + 100 + 100) м² = 300 х 360 = 108 000 лм. Если это астрономическое значение «перевести» в обычные 100-ваттные лампы накаливания, то потребуется всего лишь… 72 штуки.

Практический подход будет другим. Совершенно не нужно освещать потолок — рабочие места сотрудников находятся внизу. Более того, конструкция многих потолочных светильников делает невозможным распространение света вверх. Значит из вычислений нужно убрать площадь потолка:

300 лк х 260 м² = 78 000 лм.

Современные потолочные светильники со светодиодами могут выдавать 5000 люменов. Соответственно их потребуется 16 штук (78 000/5000) с округлением до целого числа.

Это количество можно снизить. Согласно СанПиН 2.2.1/2.1.1.1278-03 замер освещенности производится над рабочей поверхностью, а также в контрольных точках, удаленных от стен и световых проемов на 1 м. Достаточно разместить осветительные приборы над рабочими местами сотрудников. Математически уменьшив геометрические характеристики пола на 1 м с каждой стороны, получим:

300 лк х (160 + 64)м² = 300 х 224 = 67200 лм. Что в потолочных светильниках составит: 14 штук с округлением до целого числа.

Советуем изучить Дозиметр для измерения радиации

Watch this video on YouTube

Точечный метод расчета освещения

Т очечный метод расчета искусственного освещения позволяет установить уровень освещенности каждой точки в помещении, независимо от расположения в горизонтальной, вертикальной и наклонной плоскостях.

Этот метод невероятно трудоемкий, однако результат стоит затраченных усилий. Он позволяет получить наиболее точные данные и зависит лишь от того, насколько добросовестно инженер выполнит все расчеты.

Расчет освещения точечным методом также используется для расчета неравномерного освещения: общего, местного, наружного, локализованного. Освещенность помещения, согласно расчету, должна в любой точке достигать значения нормы даже при условии, когда срок службы источника света подходит к концу.

За основу расчета берется основной закон светотехники. Формула произведения расчета зависит от светового прибора и характеристик объекта. В расчете используются специальные вспомогательные номограммы, графики и таблицы.

где I — сила света в направлении от источника к точке, кд;
cos а — косинус угла падения луча на плоскость;
R — расстояние между источником и точкой, м.

Прежде чем начать расчет необходимо вычертить схему размещения осветительных приборов в масштабе. Это позволит определить геометрические соотношения и углы падения света.

К расчету освещения точечным методом. С — светильник, О — проекция светильника на расчетную плоскость, А — контрольная точка.

Представленные методы расчета освещенности помещений наиболее часто используются специалистами. Выбор конкретного метода должен быть обусловлен функциональным предназначением помещения, а также количеством средств, которые будут вложены в освещение.

Расчет освещенности помещения крайне важен для будущей эксплуатации здания.

Главное управление строительства разработало специальные нормативные правила, занесенные в специальную документацию под названием СНиП. При произведении расчетов необходимо опираться на этот документ.

Помните, что от правильного расчета освещенности и подбора осветительного оборудования будет зависеть здоровье, а иногда и жизни людей. Нужно крайне ответственно отнестись к этому процессу, несмотря на то, что качественное его исполнение может отнять достаточно значительный промежуток времени и большое количество сил. Помните, что здоровье человека превыше всего и оно явно стоит затраченных на это усилий.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Источники освещения: естественные и искусственные

Взяв паспортные данные на классическую лампу накаливания и светодиод, можно выяснить световую отдачу каждого изделия. Для этого указанный в люменах поток делят на потребляемую мощность (Вт).


Сравнение разных источников света

Эти данные наглядно демонстрируют преимущества новых технологических решений.

Следует подчеркнуть! Современные светодиодные лампы в несколько раз экономичнее, по сравнению с газоразрядными аналогами. В отличие от последних, они не содержат вредные вещества. Потенциальных потребителей привлекают их долговечность и устойчивость к механическим воздействиям.

Солнечный и лунный свет – естественные источники. Физиологические особенности человека сформировались с учетом соответствующего спектрального распределения.

Радиосвязь

Мощность радиоволны, создаваемой передатчиком, также можно выразить через удельную мощность, показывающую какое количество энергии проходит через единицу площади пространства (Вт/м2). При использовании изотропных антенн радиоволны излучаются во всех направлениях, поэтому удельную мощность радиосигнала на расстоянии R от антенны можно определить как мощность передатчика, деленную на площадь поверхности сферы с данным радиусом (4πR2).

Поскольку площадь поверхности сферы увеличивается пропорционально квадрату ее радиуса, то и удельная мощность радиоволны (Вт/м2) будет уменьшаться пропорционально квадрату расстояния между передатчиком и приемником.