Диод зенера

Содержание

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Схемы включения стабилитрона

Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.

Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.

Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».

Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.

Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.

Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.

Хотя в технической документации времен СССР разрешается параллельное включение зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.

Для повышения допустимого тока нагрузки используется другая схема. Параметрический стабилизатор дополняется транзистором, и получается эмиттерный повторитель с нагрузкой в цепи эмиттера и стабильным напряжением на базе транзистора.

В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.

Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.

Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.

Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Что такое диодный мост, принцип его работы и схема подключения

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое варистор, основные технические параметры, для чего используется

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются  для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

Вывода ~ подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Это интересно: Как провести расчёт веса и определить конституцию человека: объясняем обстоятельно

Приближенные модели диодов

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

Приближенная модель диода «идеальный диод + Vϒ»

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости Vϒ.

Приближенная модель диода «идеальный диод + Vϒ + rD»

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.

Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В

Параметрический стабилизатор – основные параметры

В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы.

Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.

Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.

Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.

Схема стабилизатора

Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.

Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.

Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD.

На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1.

Такой принцип действия схемы позволяет сделать расчет всех параметров.

Принцип действия стабилитрона

Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер.

При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя.

Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.

Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Будет интересно Как устроен туннельный диод?

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Будет интересно SMD транзисторы

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

Стабилитрон

Стабилитрон — полупроводниковый диод, предназначенный для стабилизации напряжения.

Рис. 6.8 Условное графическое обозначение

В качестве материала для полупроводниковых стабилитронов ис­пользуется, как правило, кремний, обладающий высокой температурной стабильностью.

Рис. 6.9 ВАХ стабилитрона

В прямом включении ВАХстабилитрона практически не отличается от прямой ветви любого кремниевого диода.

Обратная ветвь ВАХимеет вид прямой вертикальной линии, проходящей поч­ти параллельно оси токов.

Нормальным режимом работы стабилитрона являет­ся работа при обратном напряжении на участке электрического пробоя р-n перехода.

По сравнению с обычными диодами стабилитрон имеет достаточно низкое напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока.

Полупроводниковый материал стабилитронов, имеют высокую концентрацию легирующих примесей (узкий переход). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие нарушения теплового баланса).

В основе работы стабилитрона лежат два механизма:

— лавинный пробой (пробой Аваланчи, avalanche breakdown) обычно развивается в достаточно широких p-n-переходах. Напряжение стабилизации > 5-6В.

— туннельный пробой (пробой Зенера, Zener, в англоязычной литературе, диод Зенера),

развивается в тонких р-nпереходах при большой напряженности электрического поля. Напряжение стабилизации < 5В.

Они присутствуют в любом стабилитроне совместно, но преобладает только один из них.

При изменении в широких пределах тока через прибор паде­ние напряжения на нем практически не изменяется. Это свойство кремниевых стабилитронов и позволяет использовать их в качестве стабилизатора напряжения.

Для того, чтобы предотвратить тепловой пробой в конструкции стабилитрона пре­дусмотрен отвод тепла от р-n перехода.

Пример:Схема включения стабилитрона (параметрический стабилизатор)

Простейшая схема стабилизации постоянного напряжения – рис. 6.10

Выходное напряжение стабилизатора должно оставаться постоянным при изменении выходного напряжения или изменения сопротивления нагрузки.

Рис. 6.10Параметрический стабилизатор

Выходное напряжение стабилизатора не может быть абсолютно стабильным. Приращения Ucm

малы, и зависят от приращений входного напряжения U вх .

U вх = U cm+ IR0R0 , (6.2)

где rq

токоограничивающий резистор.

IR0 = (Uвх — Ucm)/ R0,

(6.3)

При увеличении входного напряжения Uвх+ Uвх

I’R0 = (Uвх+ Uвх — Ucm)/ R0 (6.4)

При этом I’R0 > IR0 и I’cm > Icm ток через стабилитрон увеличивается.

Параметром, определяющим качество стабилизатора является коэффициент стабилизации.

Коэффициент стабилизации определяется следующим образом:

(при этом 1Н считается постоянным)

(6.5)

Операция [ править ]

Вольт-амперная характеристика стабилитрона с напряжением пробоя 3,4 В.

Температурный коэффициент напряжения стабилитрона относительно номинального напряжения стабилитрона.

Обычный твердотельный диод пропускает значительный ток, если он смещен в обратном направлении.выше его обратного напряжения пробоя. Когда напряжение пробоя обратного смещения превышено, обычный диод подвергается воздействию высокого тока из-за лавинного пробоя. Если этот ток не ограничен схемами, диод может быть необратимо поврежден из-за перегрева. Стабилитрон демонстрирует почти те же свойства, за исключением того, что устройство специально разработано так, чтобы иметь пониженное напряжение пробоя, так называемое напряжение Зенера. В отличие от обычного устройства, стабилитрон с обратным смещением демонстрирует управляемый пробой и позволяет току поддерживать напряжение на стабилитроне близким к напряжению пробоя стабилитрона. Например, диод с напряжением пробоя стабилитрона 3,2 В демонстрирует падение напряжения почти на 3,2 В в широком диапазоне обратных токов.Поэтому стабилитрон идеально подходит для таких приложений, как генерацияопорное напряжение (например , для усилителя стадии), или в качестве стабилизатора напряжения для слаботочных применений.

Другой механизм, вызывающий аналогичный эффект, — это лавинный эффект, как в лавинном диоде . Два типа диодов фактически сконструированы одинаково, и оба эффекта присутствуют в диодах этого типа. В кремниевых диодах напряжением примерно до 5,6 вольт эффект Зенера является преобладающим и демонстрирует заметный отрицательный температурный коэффициент . При напряжении выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.

В диоде на 5,6 В эти два эффекта возникают вместе, а их температурные коэффициенты практически компенсируют друг друга, поэтому диод на 5,6 В полезен в приложениях с критическими температурами. Альтернатива, которая используется для опорного напряжения , которые должны быть очень стабильными в течение длительных периодов времени, чтобы использовать диод Зенера с температурным коэффициентом (TC) от +2 мВ / ° C (пробивного напряжения 6,2-6,3 V) , подключенного последовательно с кремниевым диодом, смещенным в прямом направлении (или транзисторным BE-переходом), изготовленным на одном кристалле. Диод с прямым смещением имеет температурный коэффициент -2 мВ / ° C, что приводит к отключению ТС.

Современные технологии изготовление произвели устройства с напряжением , чем снизить 5.6 V с коэффициентами пренебрежимо мало температур, [ править ] , но , как устройства высокого напряжения встречается, температурный коэффициент резко возрастает. Диод на 75 В имеет в 10 раз больший коэффициент, чем диод на 12 В. [ необходима цитата ]

Стабилитроны и лавинные диоды, независимо от напряжения пробоя, обычно продаются под общим термином «стабилитрон».

При напряжении 5,6 В, где преобладает эффект Зенера, ВАХ вблизи пробоя имеет более округлую форму, что требует большей осторожности при нацеливании на условия смещения. ВАХ для стабилитронов выше 5,6 В (преобладает лавина) при пробое намного резче.

Проверка измерителем

Перед началом работы любые типы элементов нуждаются в проверке. Не пренебрегайте этим правилом. Существует несколько способов проверить диод:

  • Основной способ проверки — с помощью мультиметра. Встроенная в измеритель проверка. Большинство мультиметров имеют режим прозвонки p-n перехода. Этот режим обычно обозначен значком диода на их передней панели. Чтобы прозвонить мультиметром диод, установите ручку регулятора вашего измерительного прибора на обозначение диода либо нажмите кнопку с этим обозначением на передней панели прибора. Далее подключите красный измерительный щуп к аноду проверяемого элемента, а черный щуп — к катоду. Узнать, какой из выводов анод, а какой катод, можно в интернете, прочитав описание на используемый вами диод. В описаниях обычно указывается маркировка. При подключении описанным способом мультиметр должен показать пороговое прямое напряжение тестируемого диода. Если элемент неисправен, то прибор покажет ноль или сильно отличающееся от порогового показание. При обратном подключении (черный щуп мультиметра к аноду, красный щуп — к катоду) мультиметр должен показать нулевое напряжение.
  • Вам нужно прозвонить диод, если ваш мультиметр не поддерживает режим проверки полупроводниковых приборов. Соберите простую схему. Соедините последовательно источник питания постоянного тока номинальным напряжением 5 вольт, резистор сопротивлением 100 Ом и проверяемый полупроводник. Катод соедините с минусом источника питания, а анод — с резистором. Далее переключите мультиметр в режим определения постоянного напряжения. Красный щуп мультиметра соедините с анодом тестируемого диода, а черный щуп — с катодом. При исправности элемента измеритель покажет пороговое прямое напряжение на нем.
  • Проверка диода в случае отсутствия у мультиметра режима прозвонки полупроводников. Выберите на мультиметре режим измерения сопротивления, диапазон измеряемого сопротивления до 2 кОм. Подсоедините красный щуп прибора к аноду, черный щуп к катоду элемента. При этом измерительный прибор должен показать сопротивление порядка сотен Ом. Если подсоединить мультиметр к полупроводнику наоборот (черный щуп к аноду, красный — к катоду), то он должен показать бесконечное сопротивление или разрыв цепи. Если выдаются другие показания, значит, элемент неисправен.