Диэлектрики и проводники в электрическом поле

Содержание

  • 1 1. Поле внутри проводника
  • 2 2. Распределение заряда в проводнике
  • 3 3. Поле снаружи проводника вблизи его поверхности
  • 4 4. Распределение потенциала в проводнике
  • 5 5. Полость внутри проводника

«Хочу сообщить вам новый и страшный опыт, который никак не советую повторять… Вдруг моя правая рука была поражена с такой силой, что все тело содрогнулось, как от удара молнии. …Одним словом, я думал, что пришел конец … Ради французской короны я не согласился бы еще раз подвергнуться столь жуткому сотрясению…» Это слова из воспоминаний лейденского профессора Мушенбрека, приведенные в книге В. Карцева «Приключения великих уравнений». Мушенбрек в 1745 году ставил опыты по электричеству и получил простейший конденсатор, названный впоследствии лейденской банкой. Во время опытов профессор и подвергся «столь жуткому сотрясению» в результате разряда конденсатора через человеческое тело, являющееся, как известно, проводником.

Тот факт, что в природе существуют проводники, обогащает окружающий нас мир разнообразными электрическими явлениями, среди которых есть и далеко небезопасные

Проводники занимают важное место при изучении электромагнетизма

Рассмотрим подробно случай, когда заряженный неподвижный проводник находится во внешнем электростатическом поле (созданном посторонними неподвижными зарядами). В проводнике рано или поздно все заряды перестанут перемещаться, и наступит равновесие (так как в противном случае мы получили бы вечный двигатель в результате непрерывного выделения тепла при движении зарядов). Для такого заряженного и помещенного во внешнее электростатическое поле проводника будут справедливы утверждения, приведенные ниже.

ПОСТОЯННЫЙ ТОК

Электрический ток — это упорядоченное движение заряженных частиц (электронов и ионов). За направление тока условно принято направление движения положительных зарядов, т.е. от « + » к « — ».

Условия, необходимые для существования электрического тока:

  • Наличие свободных заряженных частиц;
  • Наличие электрического поля, действующего на заряженные частицы с силой в определённом направлении;
  • Наличие замкнутой электрической цепи.

Действия тока:

  1. Тепловое: проводник по которому течет ток нагревается.
  2. Химическое: электрический ток может изменять химический состав проводника (электролита).
  3. Магнитное: ток оказывает силовое воздействие на соседние токи и намагниченные тела. Вокруг проводника с током существует магнитное поле.

Электродвижущая сила.

Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.

Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.

Сторонние силы — любые силы, действующие на электрические заряженные частицы, за исключение сил, электростатического происхождения (т.е. кулоновских).

ЭДС – электродвижущая сила – физическая величина, определяемая работой , совершаемой сторонними силами при перемещении единичного положительного заряда от «+» полюса к «-» полюсу внутри источника тока. Является энергетической характеристикой источника тока.

Шунтирование амперметра.

Важным примером применения последовательного и параллельного соединения проводов являются различные схемы включения электроизмерительных приборов. Допустим, что имеется некоторый амперметр, рассчитанный на максимальный ток Imax, а требуется измерить большую силу тока. В этом случае параллельно к амперметру присоединяют малое сопротивление r, по которому направится большая часть тока. Его называют обычно шунтом. Сопротивление амперметра – R, и пусть R/r=n. Сила тока в цепи, амперметре и в шунте равны соответственно I, Iа и Iш

Параллельное присоединение шунта к измерительному прибору с целью изменения его чувствительности называют шунтированием. Схема шунтирования амперметра добавочным малым сопротивлением r.

Постоянный ток. Работа и мощность. Закон Джоуля – Ленца.

Работа электрического поля по перемещению заряда ∆ q из одной точки в другую равна произведению напряжения U между этими точками на величину заряда Dq: A=DqU

Учитывая, что Dq = IDt получаем: A= IUDt = I 2 RDt = Dt

При прохождении тока через проводник происходит его нагревание, значит электрическая энергия переходит в тепловую.

Закон Джоуля – Ленца гласит: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивлению проводника и времени.

Классификация проводников.

классические новые (ХХ век)
металлы электролиты плазма сверхпроводники полупроводники
электроны положительные иотрицательные ионы электроны,положительные иотрицательные ионы электронныекуперовскиепары электроны и дырки

Мы относим сверхпроводники и полупроводники к проводникам,
хотя это вопрос весьма спорный, так как они обладают особыми свойствами. Однако
общим свойством для всех проводников является то, что в них имеются свободные
носители заряда, поэтому заряды, возникающие во внешнем электростатическом поле,
могут быть легко отделены друг от друга и перемещаться внутри проводника.

Хорошая проводимость

Электрические проводники должны иметь хорошую электропроводность, чтобы выполнять свою функцию по передаче электроэнергии.

Международная электротехническая комиссия в середине 1913 года определила, что электропроводность меди в чистом виде может служить эталоном для измерения и сравнения электропроводности других проводящих материалов.

Таким образом, Международный стандарт на отожженную медь (Международный стандарт отожженной меди, IACS для его аббревиатуры на английском языке).

В качестве эталона была принята проводимость отожженной медной проволоки длиной один метр и массой одного грамма при 20 ° C, значение которой равно 5,80 x 10.7 Вы-1. Это значение известно как 100% -ная электрическая проводимость IACS, и оно является эталоном для измерения проводимости проводящих материалов.

Электропроводящий материал считается таковым, если он имеет более 40% IACS. Материалы с проводимостью более 100% IACS считаются материалами с высокой проводимостью.

Носители зарядов и их движение

При отсутствии электрического поля свободные точечные заряды пребывают в равновесии. Они осуществляют колебания, взаимодействуя между собой и с ионами такого же, либо противоположного знака. Однако картина равновесия вмиг нарушается при попадании металла в электрическое поле. На заряженном проводнике возникает электрическое смещение.

Под действием кулоновских сил происходит перераспределение электронов в металлическом теле. Перемещению зарядов способствует напряжённость поля, действующая на носители заряженных частиц разных знаков, но в разных направлениях.

В результате этого воздействия заряженные частицы устремляются в противоположные стороны. Точнее, в металлах происходит только перемещение электронов, которые скапливаются на поверхности с одной стороны.

Положительные ионы, связанные атомными силами кристаллической решётки не перемещаются, но поскольку электроны устремились в одну сторону, то на другой стороне проводника преобладают дырки (положительно заряженные ионы) (см. рис. 1). Таким образом, можно утверждать, что электроны и положительные ионы под действием электрического поля распределяются в противоположных направлениях на поверхности тел. То есть, заряды стремятся к равновесному распределению.


Рис. 1. Распределение зарядов в проводнике

Процесс распределения частиц продолжается до тех пор, пока не уравновесится их взаимодействие внешних и внутренних сил. То есть, пока сумма напряжённостей внешнего электрического поля не уравняется с внутренней напряжённостью. Данный процесс длится доли секунды. Если плотность энергии не меняется, а металл остаётся в спокойствии, то равновесие сил является константой.

Учитывая направления внешних векторов напряженности и внутренних сил, действующих на проводник, можно записать:

Результирующий вектор напряженности

Нулевое значение напряжённости поля означает, что внутренний потенциал тела компенсируется действием внешних сил:

Если в электрическое поле поместить металлический шар, то все статическое электричество на его поверхности будет иметь одинаковый потенциал. Такие поверхности получили название эквипотенциальных поверхностей. Заряды, скопившиеся под действием сил напряжённости поля, называются индуцированными или избыточными. Наличие избыточных зарядов характерно для всех типов проводников, оказавшихся в электрическом поле.

Рассуждения, приведённые выше, справедливы также для веществ со свободными ионами разных знаков (растворы солей и кислот). В результате такого распределения заряды также располагаются на противоположных концах токопроводящего тела. При этом равенство, записанное выше, сохраняется.


Рис. 2. Выводы

Ещё одно важное свойство проводников: при сообщении им дополнительных зарядов, собственные заряженные частицы распределяются так, чтобы восстановилось равновесие. Например, при добавлении отрицательных зарядов, последние будут противодействовать избыточным электронам, стремясь занять их место на поверхности тела

Если же создать условия для отвода избыточных заряженных частиц (при сохранении притока новых), например, заземлить кондуктор, то возникнет электрический ток. Причём перемещение заряженных частиц будет проходить по поверхности металла, но не внутри его, как можно было бы ожидать.

Распределение зарядов и форма тела

Как было замечено выше, распределение зарядов зависит от формы тела. Больше всего статического электричества собирается на выступах, особенно на острых концах (см. рис. 3, 4).


Рис. 3. Форма тела и распределение статического электричества


Рис. 4. Распределение статического электричества на кондукторе

Как видно из рисунка 4 плотность распределения зарядов на вогнутых поверхностях минимальна. Электростатическое поле сплошных и полых проводников не отличается, если их поверхности идентичны. Другими словами все токопроводящие тела с одинаковыми поверхностями обладают одинаковыми поверхностными плотностями.

На сферических поверхностях статическое электричество распределяется равномерно. Ёмкость конденсатора (сферического) вычисляют по формуле:

Емкость сферического конденсатора

где R1 и R2 – внешний и внутренний радиусы сферического конденсатора.

Распределение статического электричества на сфере иллюстрирует рисунок 5

Обратите внимание на то, что внутри сферического тела, как впрочем, и любого другого, заряды отсутствуют: вектор E=0, φ=const


Рис. 5. Распределение заряженных частиц на сфере

Вы, наверно, слышали о клетке Фарадея. Человек, находящийся в замкнутом пространстве из токопроводящего материала, то есть в клетке, не ощущает на себе влияния мощных разрядов. Статическое электричество стекает по поверхностям стенок клетки на землю, и не могут попасть внутрь клетки.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Лёгкий незаряженный шарик из металлической фольги подвешен на тонкой шёлковой нити. При поднесении к шарику стержня с положительным электрическим зарядом (без прикосновения) шарик

1) отталкивается от стержня 2) не испытывает ни притяжения, ни отталкивания 3) на больших расстояниях притягивается к стержню, на малых расстояниях отталкивается 4) притягивается к стержню

2. К незаряженной лёгкой металлической гильзе, подвешенной на шёлковой нити, поднесли, не касаясь, положительно заряженную стеклянную палочку. На каком рисунке правильно показано поведение гильзы и распределение зарядов на ней?

3. К незаряженному электрометру поднесли положительно заряженную палочку. Какой заряд приобретут шар и стрелка электрометра?

1) шар и стрелка будут заряжены отрицательно 2) шар и стрелка будут заряжены положительно 3) на шаре будет избыточный положительный заряд, на стрелке — избыточный отрицательный заряд 4) на шаре будет избыточный отрицательный заряд, на стрелке — избыточный положительный заряд

4. К двум одинаковым заряженным шарикам, подвешенным на изолирующих нитях, подносят положительно заряженную стеклянную палочку. В результате положение шариков изменяется так, как показано на рисунке (пунктирными линиями указано первоначальное положение нитей). Это означает, что

1) оба шарика заряжены положительно 2) оба шарика заряжены отрицательно 3) первый шарик заряжен положительно, а второй отрицательно 4) первый шарик заряжен отрицательно, а второй положительно

5. К подвешенному на тонкой нити отрицательно заряженному шарику А поднесли, не касаясь, шарик Б. Шарик А отклонился, как показано на рисунке. Шарик Б

1) имеет отрицательный заряд 2) имеет положительный заряд 3) может быть не заряжен 4) может иметь как положительный, так и отрицательный заряд

6. К отрицательно заряженному электроскопу поднесли, не касаясь его, диэлектрическую палочку. При этом листочки электроскопа разошлись на заметно больший угол. Заряд палочки может быть

1) только положительным 2) только отрицательным 3) и положительным, и отрицательным 4) равным нулю

7. К незаряженному изолированному проводнику АБ приблизили изолированный отрицательно заряженный металлический шар. В результате листочки, подвешенные с двух сторон проводника, разошлись на некоторый угол (см. рисунок).

Распределение заряда в проводнике АБ правильно изображено на рисунке

8. На нити подвешен незаряженный металлический шарик. К нему снизу поднесли заряженную палочку. Изменится ли сила натяжения нити, и если да, то как?

1) не изменится 2) увеличится независимо от знака заряда палочки 3) уменьшится независимо от знака заряда палочки 4) увеличится или уменьшится в зависимости от знака заряда палочки

9. Из какого материала может быть сделан стержень, соединяющий электроскопы, изображённые на рисунке?

А. Сталь Б. Стекло

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

10. Два металлических шарика, укреплённых на изолирующей подставке, соединили металлическим стержнем. К правому шарику поднесли отрицательно заряженную палочку, затем убрали стержень и заряженную палочку. Какой заряд будет на правом и на левом шариках?

1) на правом шарике — положительный, на левом — отрицательный 2) на правом шарике — отрицательный, на левом — положительный 3) на нравом и на левом шариках — положительный 4) на правом и на левом шариках — отрицательный

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Вокруг электрического заряда существует электрическое поле. 2) В диэлектрике, помещенном в электрическое поле, происходит перераспределение зарядов. 3) Электрическое поле невидимо и не может быть обнаружено. 4) При электризации через влияние в проводнике происходит перераспределение зарядов. 5) Диэлектрику можно сообщить электрический заряд, поместив его в электрическое поле.

12. Электрометр с шариком на его конце помещён в поле отрицательного заряда. При этом его стрелка отклонилась на некоторый угол. Как при этом изменилось количество заряженных частиц электрометре? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) количество протонов на шарике Б) количество электронов на шарике B) количество электронов на стрелке

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличилась 2) уменьшилась 3) не изменилась

Электричество и магнетизм

Электричество известно с давних времён, но иных сведений, кроме признания существования, о явлении не приводилось. Узнали лишь, что статический заряд удаётся получить трением, и дело застопорилось. Сложно сказать, что открыто раньше, но геологи считают, что магнетизм известен людям по крайней мере с V века до нашей эры. Находки указывают, что намагниченные куски породы использовались в неизвестных целях на территории современной Турции.

Известно, что систематизация данных по магнетизму началась раньше. Первопроходцем стал известный ныне, благодаря единственному документу, Перегрин. В 1269 году он написал манускрипт, где описал и систематизировал данные по магнитам, предложил методику ориентации для путешественников в пространстве. С латинского «перегринус», «пилигрим» – путешественник. Уже в первые века нашей эры свойство магнита активно эксплуатировалось китайскими мореходами. Перегрин вскрывал ряд свойств:

  1. Магнит всегда располагается по направлению с севера на юг. Следовательно, обнаруживает два полюса. Одноименные отталкиваются, а разноимённые притягиваются.
  2. Если магнит разломить пополам, получается два совершенно отдельных куска, обладающие в полной мере свойствами первоначального. Получить полюс по отдельности простыми средствами не получится.

Что касается электричества, физики отдают несомненный приоритет Гильберту. Этот человек создал трактат, где собрал и систематизировал имеющиеся данные, много экспериментировал самостоятельно. Гильберт, по странному совпадению занялся сравнением магнетизма и электричества. К 1600 году никто не задумывался о связи материй и ничего не мог доказать. Гильберт установил, что электричество – в его понимании – считается слабой субстанцией: заряд легко смывается водой, экранируется и характеризуется малой силой взаимодействия

Для теории и будущих поколений сделал важное наблюдение:

  • Магнитный шар из руды – Гильберт назвал его Тереллой – ведёт себя подобно Земному в смысле действия на стрелку компаса.
  • Электрическое взаимодействие распространяется по прямой. Следовательно, Гильберт оказался первым, кто правильно охарактеризовал силовые линии поля.

Два века понадобилось человечеству, чтобы подобный эффект обнаружить в проводе с током. Сказанное приводит к выводу, что исследования тормозились, вдобавок к инквизиции, отсутствием генератора электричества – не с чем проводить эксперименты. Тереть янтарь шерстью утомительно и малоэффективно. Иллюстрации Гильберта (см. рис.) подтолкнули исследователей к изучению структуры силовых линий, что в будущем помогло объяснить поведение диэлектриков и проводников в магнитном поле.

Гильберту приписывают первую систематизации материалов. Он искал вещества, демонстрирующие способности к электризации, составил списки отличающихся. В последний класс попало большинство металлов, в первый – диэлектрики. Сегодня установлено, что статический заряд распределить возможно практически на любом теле. Но трением приобретают необычные свойства преимущественно диэлектрики. Таким образом, Гильберт первым систематизировал материалы, хотя на момент 1600 года не смог дать удовлетворительные объяснения.

Считается, что первый электростатический генератор изобрёл Отто фон Герике. Серный шар, вращающийся на железной оси, натирали ладонями, наблюдая искры электрического разряда. Герике обнаружил перераспределение статического электричества по поверхности различных тел. На основе созданного генератора стали ставить опыты, к середине XVIII века материалы оказались поделены на классы (проводники и диэлектрики) и по знаку получаемого трением заряда. Появилось смоляное (отрицательное) и стеклянное (положительное) электричество.

Дальнейшие эксперименты позволили при помощи крутильных весов (на тонкой нити) установить закон притяжения и отталкивания между зарядами. Это сделал Шарль Кулон. Он описал количественно силу взаимодействия, подтвердив предположение Гильберта о линейности силовых линий электрических зарядов. На это ушло без малого два века. Закон Кулона позволил учёным дать первые объяснения касательно поведения диэлектриков и проводников в электрическом поле. Уже тогда присутствовало любопытное приспособление, способное удивить и скептика…

Электростатическая индукция

Любое тело, помещенное в электрическом поле, электризуется. Однако процесс электризации для различных веществ будет разным. Электрические характеристики электронейтрального тела зависят от подвижности заряженных частиц в нем, которая определяется строением атомов вещества и их взаимным расположением.

По концентрации свободных заряженных частиц в веществе все вещества делятся на три основных класса: проводники, диэлектрики и полупроводники. К проводникам относятся вещества, содержащие заряженные частицы, способные двигаться упорядоченно по всему объему тела под действием электрического поля, — так называемые свободные заряды. Проводниками являются все металлы, водные растворы солей, кислот, щелочей, расплавы солей, ионизованные газы.

Рассмотрим поведение в электрическом поле только твердых металлических проводников. В металлах носителями свободных зарядов являются свободные электроны. Их называют электронами проводимости. Свободные электроны участвуют в тепловом движении и могут перемещаться по куску металла в любом направлении.

Поместим незаряженный металлический проводник в однородное электростатическое поле.

Под действием поля в нем возникнет упорядоченное движение свободных электронов в направлении, противоположном направлению напряженности Ē этого поля. Электроны будут накапливаться на одной стороне проводника и образуют там избыточный отрицательный заряд, а их нехватка на другой стороне проводника повлечет образования там избыточного положительного заряда, то есть в проводнике произойдет разделение зарядов. Эти нескомпенсированные разноименные заряды появляются в проводнике только под действием внешнего электрического поля, то есть такие заряды являются индуцированными (приведенными). А в целом проводник остается незаряженным. В этом мы убеждаемся, вынимая проводник из электрического поля.

Вид электризации, при котором под действием внешних электрических полей происходит перераспределение зарядов между частями определенного тела, называют электростатической индукцией.

Нескомпенсированные электрические заряды, появившиеся на противоположных частях проводника, создают внутри проводника собственное электрическое поле напряженностью Ēвн. Направления внешнего и внутреннего полей — противоположные:

Советуем изучить — Электростатическая защита

Проводник во внешнем электрическом поле

В результате перемещения свободных носителей заряда и накопления их на противоположных частях проводника напряженность Ē внутреннего поля увеличивается и, наконец, уравнивается по модулю с напряженностью Ēвн внешнего поля. Это приводит к тому, что напряженность результирующего поля внутри проводника равна нулю. К тому же на проводнике устанавливается равновесие зарядов.

ФИЗИКА

§ 37. Сила тока. Единицы силы тока

Действия электрического тока, которые были описаны в § 35, могут проявляться в разной степени — сильнее или слабее. Опыты показывают, что интенсивность (степень действия) электрического тока зависит от заряда, проходящего по цепи в 1 с.

Когда свободная заряженная частица — электрон в металле или ион в растворе кислот, солей или щелочей — движется по электрической цепи, то вместе с ней происходит и перемещение заряда. Чем больше частиц переместится от одного полюса источника тока к другому или просто от одного конца участка цепи к другому, тем больше общий заряд q, перенесённый частицами.

Ампер Андре Мари (1775-1836)
Французский физик и математик, создал первую теорию, которая выражала связь электрических и магнитных явлений. Ввёл в физику понятие «электрический ток».

Электрический заряд, проходящий через поперечное сечение проводника в 1 с, определяет силу тока в цепи. Значит, сила тока равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения t, т. е.

I = q/t

где I — сила тока.

На Международной конференции по мерам и весам в 1948 г. было решено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током. Ознакомимся сначала с этим явлением на опыте.

На рисунке 60 изображены два гибких прямых проводника, расположенных параллельно друг другу. Оба проводника подсоединены к источнику тока. При замыкании цепи по проводникам протекает ток, вследствие чего они взаимодействуют — притягиваются или отталкиваются, в зависимости от направления токов в них.

Рис. 60. Взаимодействие проводников с током

Силу взаимодействия проводников с током можно измерить

Эта сила, как показывают расчёты и опыты, зависит от длины проводников, расстояния между ними, среды, в которой находятся проводники, и, что самое важное для нас, от силы тока в проводниках. Если одинаковы все условия, кроме силы токов, то, чем больше сила тока в каждом проводнике, тем с большей силой они взаимодействуют между собой

Представим теперь себе, что взяты очень тонкие и очень длинные параллельные проводники. Расстояние между ними 1 м, и находятся они в вакууме. Сила тока в них одинакова.

За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1 м взаимодействуют с силой 2 • 10-7 Н (0,0000002 Н).

Эту единицу силы тока называют ампером (А). Так она названа в честь французского учёного Андре Ампера.

Применяют также дольные и кратные единицы силы тока: миллиампер (мА), микроампер (мкА), килоампер (кА).

1мА = 0,001 А;

1 мкА = 0,000001 А;

1кА=1000А.

Чтобы представить себе, что такое ампер, приведём примеры: сила тока в спирали лампы карманного фонаря 0,25 А = 250 мА. В осветительных лампах, используемых в наших квартирах, сила тока составляет от 7 до 400 мА (в зависимости от мощности лампы).

Через единицу силы тока — 1 А определяется единица электрического заряда — 1 Кл, о которой было сказано в § 28.

Так как I = q/t, то q = It. Полагая I = 1 А, t = 1 с, получим единицу электрического заряда — 1 Кл.

1 кулон = 1 ампер • 1 секунду,

или

1Кл = 1А • 1с = 1А • с.

За единицу электрического заряда принимают электрический заряд, проходящий сквозь поперечное сечение проводника при силе тока 1 Аза время 1 с.

Из формулы q = It следует, что электрический заряд, проходящий через поперечное сечение проводника, зависит от силы тока и времени его прохождения. Например, в осветительной лампе, в которой сила тока равна 400 мА, сквозь поперечное сечение спирали за 1 мин проходит электрический заряд, равный 24 Кл.

Электрический заряд имеет также другое название — количество электричества.

Сила тока в различных потребителях электроэнергии

Вопросы

  1. От чего зависит интенсивность действий электрического тока?
  2. Какой величиной определяется сила тока в электрической цепи?
  3. Как выражается сила тока через электрический заряд и время?
  4. Что принимают за единицу силы тока? Как называется эта единица?
  5. Какие дольные и кратные амперу единицы силы тока вы знаете?
  6. Как выражается электрический заряд (количество электричества) через силу тока в проводнике и время его прохождения?

Упражнение 24

  1. Выразите в амперах силу тока, равную 2000 мА; 100 мА; 55 мА; 3 кА.
  2. Сила тока в цепи электрической плитки равна 1,4 А. Какой электрический заряд проходит через поперечное сечение её спирали за 10 мин?
  3. Сила тока в цепи электрической лампы равна 0,3 А. Сколько электронов проходит через поперечное сечение спирали за 5 мин?

Распределение зарядов и форма тела

Как было замечено выше, распределение зарядов зависит от формы тела. Больше всего статического электричества собирается на выступах, особенно на острых концах (см. рис. 3, 4).


Рис. 3. Форма тела и распределение статического электричества


Рис. 4. Распределение статического электричества на кондукторе

Как видно из рисунка 4 плотность распределения зарядов на вогнутых поверхностях минимальна. Электростатическое поле сплошных и полых проводников не отличается, если их поверхности идентичны. Другими словами все токопроводящие тела с одинаковыми поверхностями обладают одинаковыми поверхностными плотностями.

На сферических поверхностях статическое электричество распределяется равномерно. Ёмкость конденсатора (сферического) вычисляют по формуле:

Емкость сферического конденсатора

где R1 и R2 – внешний и внутренний радиусы сферического конденсатора.

Распределение статического электричества на сфере иллюстрирует рисунок 5

Обратите внимание на то, что внутри сферического тела, как впрочем, и любого другого, заряды отсутствуют: вектор E=0, φ=const


Рис. 5. Распределение заряженных частиц на сфере

Вы, наверно, слышали о клетке Фарадея. Человек, находящийся в замкнутом пространстве из токопроводящего материала, то есть в клетке, не ощущает на себе влияния мощных разрядов. Статическое электричество стекает по поверхностям стенок клетки на землю, и не могут попасть внутрь клетки.

Носители зарядов и их движение

При отсутствии электрического поля свободные точечные заряды пребывают в равновесии. Они осуществляют колебания, взаимодействуя между собой и с ионами такого же, либо противоположного знака. Однако картина равновесия вмиг нарушается при попадании металла в электрическое поле. На заряженном проводнике возникает электрическое смещение.

Под действием кулоновских сил происходит перераспределение электронов в металлическом теле. Перемещению зарядов способствует напряжённость поля, действующая на носители заряженных частиц разных знаков, но в разных направлениях.

В результате этого воздействия заряженные частицы устремляются в противоположные стороны. Точнее, в металлах происходит только перемещение электронов, которые скапливаются на поверхности с одной стороны.

Положительные ионы, связанные атомными силами кристаллической решётки не перемещаются, но поскольку электроны устремились в одну сторону, то на другой стороне проводника преобладают дырки (положительно заряженные ионы) (см. рис. 1). Таким образом, можно утверждать, что электроны и положительные ионы под действием электрического поля распределяются в противоположных направлениях на поверхности тел. То есть, заряды стремятся к равновесному распределению.


Рис. 1. Распределение зарядов в проводнике

Процесс распределения частиц продолжается до тех пор, пока не уравновесится их взаимодействие внешних и внутренних сил. То есть, пока сумма напряжённостей внешнего электрического поля не уравняется с внутренней напряжённостью. Данный процесс длится доли секунды. Если плотность энергии не меняется, а металл остаётся в спокойствии, то равновесие сил является константой.

Учитывая направления внешних векторов напряженности и внутренних сил, действующих на проводник, можно записать:

Результирующий вектор напряженности

Нулевое значение напряжённости поля означает, что внутренний потенциал тела компенсируется действием внешних сил:

Если в электрическое поле поместить металлический шар, то все статическое электричество на его поверхности будет иметь одинаковый потенциал. Такие поверхности получили название эквипотенциальных поверхностей. Заряды, скопившиеся под действием сил напряжённости поля, называются индуцированными или избыточными. Наличие избыточных зарядов характерно для всех типов проводников, оказавшихся в электрическом поле.

Рассуждения, приведённые выше, справедливы также для веществ со свободными ионами разных знаков (растворы солей и кислот). В результате такого распределения заряды также располагаются на противоположных концах токопроводящего тела. При этом равенство, записанное выше, сохраняется.


Рис. 2. Выводы

Ещё одно важное свойство проводников: при сообщении им дополнительных зарядов, собственные заряженные частицы распределяются так, чтобы восстановилось равновесие. Например, при добавлении отрицательных зарядов, последние будут противодействовать избыточным электронам, стремясь занять их место на поверхности тела

Если же создать условия для отвода избыточных заряженных частиц (при сохранении притока новых), например, заземлить кондуктор, то возникнет электрический ток. Причём перемещение заряженных частиц будет проходить по поверхности металла, но не внутри его, как можно было бы ожидать.

https://youtube.com/watch?v=vG9ettqy3x0

https://youtube.com/watch?v=MYfWEoqWcT4

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.