Электрический ток

Содержание

Температурный коэффициент сопротивления

α – величина, характеризующая изменение сопротивления проводника в зависимости от температуры. Средняя величина температурного коэффициента сопротивления в интервале температур t2° — t1° может быть найдена по формуле:

Данные температурных коэффициентов сопротивления различных проводниковых материалов приведены ниже в таблице.

Значение температурных коэффициентов сопротивления металлов

Наименование металла Температурный коэффициент сопротивления, 1/°С
Алюминий Альдрей Бронза Вольфрам Золото Латунь Медь Молибден Никель Олово Платина Ртуть Сталь Серебро Свинец Цинк Чугун 0,00403 – 0,00429 0,0036 – 0,0038 0,004 0,004 – 0,005 0,0036 0,002 0,004 0,0047 – 0,005 0,006 0,0043 – 0,0044 0,0025 – 0,0039 0,009 0,0057 – 0,006 0,0034 – 0,0036 0,0038 – 0,004 0,0039 – 0,0041 0,0009 – 0,001

Общие сведения

Любой объект, который существует в природе, как живой, так и неживой, называют физическим телом. Состоит оно из вещества, которое образовывается из элементарных частиц, обладающих физическими и химическими свойствами. Определяются они количеством молекул, которые формируются с помощью связанных между собой атомов. В свою очередь, они состоят из элементарных частиц — нейтронов и протонов. Вокруг них на определённом расстоянии по орбитали вращаются электроны. Они являются носителями единичного электрического заряда.

Учёные условно приняли, что электроны обладают отрицательным зарядом, а протоны — положительным. При этом в любой оболочке, ядре, количество минусовых и плюсовых частиц одинаковое. Поэтому атом является электрически нейтральным. Для того чтобы это состояние изменилось необходимо к телу приложить внешнее воздействие. В результате атом может потерять или, наоборот, присоединить несколько электронов, то есть превратиться в ион. Такое явление характерно для жидкостей, вступающих в различные реакции.

Несвязанные с атомами электроны называют свободными. Любая отрицательная частица, получившая энергию извне, может разорвать связь и вырваться за пределы ядра. Например, при поглощении фотона света или радиоактивном распаде. Число свободных электронов в различных материалах отличается. Вот именно по их количеству и было решено учёным советом разделять все вещества на два больших класса:

  • проводники;
  • диэлектрики.

Как пример в качестве хорошего проводника можно привести — медь, а непроводника — стекло. Это разделение позволило показать, какие тела могут участвовать в возникновении электрического тока, а какие нет. Количественной характеристикой явления является электропроводность — способность физического вещества проводить ток. Ведь последний образовывается при упорядоченном движении свободных носителей зарядов. Чем их больше в объекте, тем сильнее возникает сила переноса.

Электропроводность древесины.

Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. 22 приведены некоторые данные.

Таблица 22. Сравнительные данные об удельном объемном и поверхностном сопротивлении древесины.

Порода и направление Влажность, % Удельное объемное сопротивление, ом х см Удельное поверхностное сопротивление, ом
Береза, вдоль волокон 8,2 4,2 х 1010 4,0 х 1011
Береза, поперек волокон 8,0 8,6 х 1011 2,8 х 1012
Бук, вдоль волокон 9,2 1,7 х 109 9,4 х 1010
Бук, поперек волокон 8,3 1,4 х 1010 7,9 х 1010

Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл. 24.

Таблица 23. Удельное объемное сопротивление древесины в абсолютно сухом состоянии.

Порода Удельное объемное сопротивление, ом х см
поперек волокон вдоль волокон
Сосна 2,3 х 1015 1,8 х 1015
Ель 7,6 х 1016 3,8 х 1016
Ясень 3,3 х 1016 3,8 х 1015
Граб 8,0 х 1016 1,3 х 1015
Клен 6,6 х 1017 3,3 х 1017
Береза 5,1 х 1016 2,3 х 1016
Ольха 1,0 х 1017 9,6 х 1015
Липа 1,5 х 1016 6,4 х 1015
Осина 1,7 х 1016 8,0 х 1015

Таблица 24. Влияние влажности на электрическое сопротивление древесины.

Порода Удельное объемное сопротивление (ом х см) поперек волокон при влажности древесины (%)
22 100
Кедр 2,5 х 1014 2,7 х 106 1,8 х 105
Лиственница 8,6 х 1013 6,6 х 106 2,0 х 105

Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22—23° до 44—45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20—21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 107 ом см, а при охлаждении до температуры —24° С оно оказалось равным 1,02 х 108 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.

Направление и величина электрического тока. Количество электричества

Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).

Рисунок 1. Простейшая электрическая цепь

Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.

Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис. 2. В действительности же в металлических проводниках ток проходит в обратном направлении.

Рисунок 2. Направление движения электронов в проводнике и направление тока

С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.

Определение: Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Сила тока (ток) обозначается буквой I или i.

Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:

За единицу тока принимается ампер (сокращенно обозначается буквой А). В ГОСТ приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10-7 единицы силы на каждый метр длины».

Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).

Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.

В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.

1 мА = 0,001 А, или 1 А = 1000 мА.

Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.

1 мкА = 0,001 мА = 0,000001 А.

Полезно запомнить также следующие соотношения:

1 мА= 1000 мкА = 0,001 А; 1 А = 1000 мА = 1 000 000 мкА.

При рассмотрении вопросов взаимодействия зарядов мы сказали, что количество электричества измеряется в кулонах. При этом количество электричества в 1 кулоне соответствует приблизительно общему заряду 6 • 1018 электронов. Сейчас можно дать более строгое определение кулона:

Определение: кулон — это количество электричества, проходящее через поперечное сечение проводника в течение 1 секунды при неизменяющемся токе в 1 ампер.

Эта единица количества электричества часто называется ампер-секундой (сокращенное обозначение А-с). На практике количество электричества измеряется в ампер-часах (А-ч).

Если известен ток I в проводнике, то количество электричества q, прошедшее через поперечное сечение проводника за время t, можно определить по формуле:

где q — в кулонах; I— в амперах; t — в секундах.

Для измерения тока в цепи применяются приборы, называемые амперметрами. Амперметр включается в цепь так, чтобы через него проходил весь измеряемый им ток (рис. 3).

Рисунок 3. Схема включения амперметра в электрическую цепь. Б — источник напряжения; PA — амерметр; EL — нагрузка (лампа).

Похожие материалы:

  • Протекание тока
  • Электрический ток в металлических проводниках
  • Электродвижущая сила (ЭДС) источника энергии
  • Электрическое сопротивление проводника. Электрическая проводимость
  • Электрический ток в электролитах
  • Ток смещения в диэлектрике
  • Электрический ток в полупроводниках
  • Электрический ток в газах

2.9. Неметаллические проводники

Из числа твердых неметаллических проводниковых материалов наибольшее значение имеют материалы на основе углерода. Из угля изготавливают щетки электрических машин, электроды для прожекторов, электроды для дуговых электрических печей и электролитических ванн, аноды гальванических элементов. Угольные порошки используют в микрофонах, из угля делают высокоомные резисторы, разрядники для телефонных сетей.

В качестве сырья для производства электроугольных изделий можно использовать сажу, графит и антрацит. Природный графит – одна из модификаций чистого углерода слоистой структуры с большой анизотропией как электрических, так и механических свойств. Сажи представляют собой мелкодисперсный углерод с примесями слоистых веществ. Лаки, в состав которых в качестве пигмента добавлена сажа, обладают малым удельным сопротивлением и могут быть использованы для выравнивания электрического поля в электрических машинах высокого напряжения.

Свойства проводников

Проводники отличаются хорошей электропроводностью. Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

  • Золото.
  • Серебро.
  • Медь.
  • Алюминий.
  • Железо.

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности  при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Параметр проводимости очень сильно зависит от температуры самого материала. При увеличении температуры кристалла, колебания электронов в кристаллической решетке увеличивается, препятствуя свободному прохождению свободных электронов. При снижении – наоборот, сопротивление уменьшается и при некотором значении близком к абсолютному нулю, сопротивление становится нулевым и возникает эффект сверхпроводимости.

Различие кабелей и проводов в зависимости от материала жилы

Жилы проводов и кабелей специализированного назначения могут быть сделаны из различных металлов, но главным образом в электротехнике используются алюминий и медь. У каждого из них есть свои определенные свойства, преимущества и недостатки, которые надо учитывать при подборе материала жилы для конкретной цели.

Алюминиевые жилы

Изобретение сравнительно недорого способа добычи алюминия сделало переворот в глобальном развитии электрификации, ведь по уровню электропроводности этот металл стоит на четвертом месте, пропуская вперед только серебро, медь и золото. Это позволило максимально удешевить производство проводов и кабелей и сделать всеобщую электрификацию реальностью.

Такие электрические провода и их виды выделяются низкой стоимостью, химической устойчивостью, высоким уровнем теплоотдачи и маленьким весом – они определяли массовость электрификации в промышленных и бытовых условиях в течение более чем полувека.

В свете сравнительно недавнего господства алюминия на рынке проводов, человеку непосвященному может показаться странным запрет положениями ПУЭ на использование этого материала в быту. Точнее нельзя использовать алюминиевые провода сечением меньше чем 16 мм², а это и есть самые распространенные из них для монтажа домашней электропроводки. Понять почему существует запрет на использование этих проводов можно ознакомившить с их достоинствами и недостатками.

+ Плюсы алюминиевых проводов

  1. Легче медных.
  2. Значительно дешевле.

– Минусы алюминиевых проводов

  1. Алюминиевые жилы сечением до 16 мм² могут быть только однопроволочными, а значит, их можно использовать только для укладки стационарной проводки и без изгибания под острым углом. Все гибкие провода и кабели всегда делались из меди.
  2. Химическая стойкость алюминия определяется оксидной пленкой, которая образуется при его контакте с воздухом. Со временем, при постоянном нагреве контакта вследствие протекания через него электрического тока, эта пленка ухудшает электропроводимость, контакт перегревается и выходит из строя. Т. е. алюминиевым проводам требуется дополнительное обслуживание, а контакты, через которые проходят мощные токи, покрывают специальной смазкой.
  3. Аморфность материала – если зажать между собой два алюминиевых провода, то со временем контакт ослабнет, так как алюминий частично «вытечет» из-под гнета.
  4. Пайка может проводиться только с использованием специальных средств, а сварку получится выполнить в камере с инертным газом.
  5. Хорошая электропроводность наблюдается только у чистого алюминия, а примеси, неизбежно остающиеся при производстве, ухудшают этот показатель.

Как итог – алюминий это хороший выбор при необходимости сэкономить здесь и сейчас, но в долгосрочной перспективе его применение обойдется дороже – из-за сравнительно невысокого срока службы и необходимости в регулярном обслуживании. По этой причине и дополнительным соображениям безопасности, использовать его для прокладки новых силовых линий ПУЭ категорически запрещает.

Медные жилы

По электропроводимости медь находится на втором месте, всего на 5% уступая по этому показателю серебру.

По сравнению с алюминием у меди есть только 2 существенных недостатка, из-за которых долгое время она использовались гораздо реже. В остальном, медь выигрывает по всем параметрам.

+ Плюсы медных проводов

  1. Электропроводность в 1,7 раз выше алюминия – меньшее сечение провода пропустит то же количество тока.
  2. Высокая гибкость и эластичность – даже одножильные провода выдерживают большое количество деформаций, а из многожильных получаются шнуры для электроприборов повышенной гибкости.
  3. Пайка, лужение и сварка проводятся без использования дополнительных материалов.

– Минусы медных проводов

  1. Стоимость – в несколько раз дороже алюминия.
  2. Высокая плотность – бухта медного провода, одинаковой с алюминием длины и сечения, будет весить в 3 раза больше.
  3. Медные провода и контакты окисляются на открытом воздухе. Впрочем, на переходное сопротивление это практически не влияет и в случае необходимость «лечится» смазыванием поверхности уже затянутого контакта.

Как итог, хоть медь и является более дорогим материалом, но в целом его использование экономически выгоднее, так как он долговечнее, требует меньше усилий при монтаже и внимания при обслуживании.

Проводники на печатных платах

Как вы знаете, все схемы состоят из проводов или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводов соединял различные радиоэлементы, и у меня получилась схема, которая усиливала звуковые частоты.

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются “печатными дорожками”.

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология).

На другой стороне печатной платы уже располагаются радиоэлементы

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому, в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев, как торт из коржей:

Бум SMD технологий вызвал в свою очередь нужду в многослойных печатных платах.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Полупроводники

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Электрическое сопротивление и проводимость

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Презентация на тему: ” Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.” — Транскрипт:

2

Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники

3

Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела

4

Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ

5

Проводники и диэлектрики – вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека

6

Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)

7

Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!

8

Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)

9

Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его

10

Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток

11

Диэлектрики – вещество, содержащее только связанные заряды

12

Диэлектрики – вещество, содержащее только связанные заряды ДИЭЛЕКТРИК

13

Диэлектрики – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ

14

Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!

15

Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда

16

Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные

17

Диэлектрики (полярные)

18

Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля

19

Диэлектрики – процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА

20

Диэлектрики – число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ

21

Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:

22

Полупроводники – вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК

Создаем кратковременный ток и выясняем условия его существования

Можно создать электрический ток с помощью двух заряженных противоположно тел.

Ток – это движение зарядов. Поэтому, нужно обеспечить возможность зарядам двигаться. То есть, нужно создать между телами дорожку, по которой заряды начнут перемещаться из одного места пространства в другое.

Продемонстрировать возникновение тока на небольшой промежуток времени можно с помощью двух электрометров, заряженных противоположно.

Попробуем для начала соединить два заряженных тела куском диэлектрика (рис. 15).

Рис. 15. Если диэлектриком соединить два заряженных тела, электрический ток не возникает

Как видно, после соединения заряд каждого из электрометров не изменился.

Это значит, что ток не возник. Дело в том, что в диэлектрике все электроны связаны со своими атомами и свободных электронов нет.

Именно свободные заряды будут передвигаться и их согласованное направленное движение мы назовем электрическим током.

Поэтому, одним из условий существования тока будет наличие свободных зарядов. То есть, наличие проводника, содержащего такие заряды.

Однако, только лишь наличия проводника недостаточно. Действительно, в проводнике присутствуют свободные заряды. Но для того, чтобы эти заряды начали совместное движение в определенную сторону, нужно, чтобы на них подействовала сила, которая будет их передвигать в этом направлении.

Сила будет действовать на заряженную частицу, если ее поместить в электрическом поле.

Электрическое поле существует в пространстве вокруг заряженных тел.

Если соединить проводником два тела, имеющие противоположные заряды, то на свободные частицы в проводнике будет действовать электрическое поле. Это поле подхватит заставит двигаться электроны в определенном направлении.

Поэтому, еще одно условие для возникновения тока – это электрическое поле.

Рис. 16. После соединения проводником, заряженные противоположными зарядами электрометры разрядились

Рис. 17. Электроны двигаются против направления электрического поля

Ток течет в направлении движения положительных зарядов.

Соединив два заряженных металлических тела проводником, мы получим ток лишь на короткий промежуток времени. Это время будет составлять доли секунды.

Кроме того, в начальный момент времени сила тока будет самой большой. А далее будет убывать по мере того, как тела будут разряжаться и их потенциалы (ссылка) будут выравниваться.

Мы же хотим, чтобы ток протекал постоянно, или, по крайней мере, достаточно длительный промежуток времени, выбранный по нашему усмотрению. И чтобы во время протекания тока его сила не изменялась.

Как этого добиться? Мы вплотную приблизились к третьему условию существования постоянного электрического тока.