Введение
Нужна ли нам электроэнергия? Странный вопрос, скажете вы – конечно, без неё нельзя представить жизнь современного человека. Но, как это ни парадоксально, сама по себе электроэнергия нам не нужна. От лампочки нам нужен свет, от спирали электрочайника – тепло и т.д. Однако электрический ток удобен тем, что позволяет передавать энергию на большие расстояние с относительно небольшими потерями, и уже «на месте» преобразовывать её в нужный нам вид энергии (световая, тепловая, механическая и т.д.).
Электрическая энергия к нашим домам доставляется от электростанций. Как они работают? Производят энергию – подойдет ли такой ответ? Нет, энергию нельзя произвести или создать, ее можно преобразовать из одного вида в другой, об этом говорит закон сохранения энергии. По-другому и быть не могло, потому что мы так и задумали понятие энергии: выделили нечто, что сохраняется.
Хорошо, разберем для примера гидроэлектростанцию – ГЭС. Вода падает, вращается турбина, она что-то дальше приводит в движение, а на выходе по проводам течет электрический ток. Если не знать, что там за механизм, уже понятно: механическая энергия преобразуется в электрическую.
Инверсия геомагнитного поля
Аномально высокая скорость движения северного геомагнитного полюса и уменьшение интенсивности геомагнитного поля в последние годы порождают спекуляции на тему скорой инверсии геомагнитного поля. Инверсией геомагнитного поля называют процесс перестановки местами южного и северного геомагнитного полюсов. В нормальном состоянии геомагнитного поля северный геомагнитный полюс находится вблизи северного географического полюса. В обратном состоянии же наблюдается противоположная картина: северный геомагнитный полюс находится вблизи южного географического полюса.
Во времени наступления инверсий не обнаружено никакой периодичности (в отличие от, к примеру, 22-летней периодичности в инверсиях магнитного поля Солнца, которая равна двухкратному периоду солнечной активности).
Типичное время между инверсиями составляет от 0.1 до 1 миллиона лет, сами инверсии длятся между 1 и 10 тысячами лет. Предполагается, что во время инверсий происходит очень сильное ослабление геомагнитного поля, и, следовательно, создаётся нешуточная угроза земной жизни (частицы солнечного ветра в больших количествах проникают в земную атмосферу). В тоже время не отмечено никакой корреляции между массовыми вымираниями земных видов и периодами инверсий геомагнитного поля.
Последняя достоверная инверсия геомагнитного поля случилась 780 тысяч лет назад. Её длительность составила от 1200 до 10000 лет в зависимости от географического положения изученных пород с остаточной намагниченностью. С другой стороны изучается возможность более свежей кратковременной инверсии геомагнитного поля, которая случилась всего 41 тысячу лет назад. Событие получило название Laschamp, так как впервые было обнаружено в 60х годах 20 века в остаточной намагниченности лавового потока с таким названием во Франции. Позже следы этой инверсии были обнаружены и в других местах Земли. Длительность инверсии составила 250-440 лет, во время неё геомагнитное поле было ослаблено на 75%.
Схема движения геомагнитных полюсов во время этой инверсии
В тоже время в спокойные периоды геомагнитные полюсы испытывают лишь хаотичный дрейф вблизи географических полюсов.
Пример вероятного движения северного геомагнитного полюса после 200 года нашей эры
Кроме того можно отметить, что текущее ослабление геомагнитного поля за последние 180 лет на 10% не является уникальным. Изучение остаточной намагниченности пород в Ливане показывает, что 2500 лет назад геомагнитное поле было в 2.5 раза сильнее, чем сейчас, после чего оно ослабло сразу почти на 30% всего за 180 лет.
Телескоп Hubble — не самый мощный
Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.
Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.
К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).
Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примено в два раза. Для примера фото Урана:
Магнитное поле и его графическое изображение
На прошлых уроках мы выяснили, что причиной возникновения магнитной силы является наличие магнитного поля. Магнитное поле порождается движущимися электрическими зарядами и, в частности, электрическим током, поскольку это упорядоченный поток заряженных частиц. Например, магнитное поле образуется вокруг проводника с током. Каким же образом можно пояснить наличие магнитного поля у постоянных магнитов, у которых никаких видимых токов нет? Согласно гипотезе великого французского физика Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах такие кольцевые токи ориентируются одинаково. Магнитные поля, которые они образуют, направлены одинаково и усиливают друг друга. В результате образуется магнитное поле внутри и вблизи постоянного магнита. Когда мы ранее сталкивались с понятием «поле», то возникала проблема понимания, что же это такое. Если сравнивать с понятием «вещество», этой проблемы, очевидно, нет, так как из вещества созданы все окружающие нас тела, мы их можем потрогать, мы их можем увидеть. Что же касается магнитного поля, то это особый вид материи, который проявляется через взаимодействие с определенными телами. Вспомним, что гравитационное поле взаимодействует с телами, имеющими массу, то есть со всеми телами. При этом электрическое поле взаимодействует с телами, имеющими заряд, что же касается поля магнитного, то оно будет взаимодействовать с телами, в которых есть подвижные заряды. Из этого возникает вопрос: если поле нельзя увидеть, можно ли его как-то изобразить? Проведем эксперимент, возьмем обыкновенный полосовой магнит, положим его на стол и накроем обыкновенной прозрачной пластиковой накладкой. Сверху на поверхность накладки над магнитом аккуратно посыпаем железные опилки, в процессе посыпания мы можем увидеть интересный эффект: опилки будут распределяться неравномерным образом, образуя так называемые дорожки, и картина этих дорожек получается упорядоченной. Что же мы увидели и почему так происходит?
Рис. 4. Силовые линии магнитного поля в опыте железными опилками
Наш опыт позволяет наглядно продемонстрировать так называемые силовые линии магнитного поля (или, как их еще именуют, просто магнитные линии). Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. В нашем эксперименте в роли магнитных стрелок выступают железные опилки. Они имеют очень простое свойство намагничиваться во внешнем магнитном поле и выстраиваться вдоль магнитных линий, причем по правилу взаимодействия магнитов, то есть противоположными полюсами друг к другу. Стоит отметить, что магнитные линии могут быть как прямолинейными, так и криволинейными, при этом правило их построения очень простое: в любой точке нахождения магнитной стрелки касательная, проведенная через нее должна быть и касательной к магнитной линии.
Для того чтобы правильно изображать магнитное поле, не проводя постоянных экспериментов с железными опилками и магнитами, необходимо знать правило его построени.
Во-первых, силовые линии магнитного поля являются замкнутыми либо уходят на бесконечность. Кроме этого, следует помнить, что они выходят из северного полюса магнита и входят в южный. Во-вторых, наиболее сильное магнитное поле является у полюсов магнитов, что изображается как более плотное расположение магнитных линий, в областях же с менее сильным магнитным полем магнитные линии изображают на большем расстоянии друг от друга.
Какие же выводы мы можем сделать из этих правил?
Магнитные линии позволяют изображать направление поля в данной точке. Магнитные линии позволяют определять силу действия этого поля.
Последние исследования
В феврале 2019 года, было опубликовано исследование в журнале Nature Geoscience.
Земля сформировалась около 4,54 миллиарда лет назад. Новое исследование дает ключ к пониманию того, как – и как быстро – Земля теряет тепло с момента своего образования. И это ключ к изучению того, как сформировался магнитный щит планеты. Он также дает представление о тепловых движениях внутри мантии (между земной корой и ядром), а также о тектонике плит.
Питер Олсон (геофизик) из Университете Джона Хопкинса в Балтиморе, штат Мэриленд, говорит что “У нас не так много реальных ориентиров для тепловой истории нашей планеты”.
Также он отмечает, что “Мы знаем, что внутри земли было жарче, чем сегодня, потому что все планеты теряют тепло. Но мы не знаем, какой была средняя температура миллиарды лет назад по сравнению с сегодняшним днем. Понимание того, когда железо во внутреннем ядре начало кристаллизоваться, может пролить луч света и дать объяснение, насколько жарко было тогда внутри планеты.”
Ядро планеты состоит из железа и никеля и имеет два слоя. Внутреннее ядро твердое. Вокруг него находится расплавленное внешнее ядро. Когда сформировалось это твердое внутреннее ядро, долгое время оставалось загадкой. Люди предположили, что это могло быть от 500 миллионов лет назад до более чем 2,5 миллиарда лет назад, говорит один из авторов исследования Джон Тардуно (геофизик в Университете Рочестера в Нью-Йорке).
Два слоя ядра взаимодействуют и создают магнитное поле, которое окружает планету. Это очень хорошо, так как оно защищает Землю от солнечных ветров (поток заряженных частиц от солнца).
По мере того как внутреннее ядро охлаждалось и кристаллизовалось, химический состав окружающей его жидкости менялся. Более плавучая жидкость поднялась бы, как шлейф, а охлаждающие кристаллы утонули бы. Благодаря созданной плотности появилось магнитное поле с двумя противоположными полюсами, северным и южным.
Иллюстрация того, как ядро Земли питает свое магнитное поле Тепловая конвекция внутри горячего расплавленного ядра Земли (оранжевого цвета) питала магнитное поле планеты миллиарды лет. Новые данные свидетельствуют о том, что примерно 565 миллионов лет назад это поле было слабым и более нестабильным (слева). Позже внутреннее ядро начало затвердевать (красное справа). Это усилило поле, придав ему относительно последовательные Северный и южный магнитные полюса (справа).Роберто Молар Канданоса и Питер Дрисколл/Nature Geoscience 2019
Смещение магнитных полюсов Земли
Впервые координаты магнитного полюса в Северном полушарии были определены в 1831 году, повторно — в 1904 году, затем в 1948 году и 1962, 1973, 1984, 1994 годах; в Южном полушарии — в 1841 году, повторно — в 1908 году. Смещение магнитных полюсов регистрируется с 1885 года. За последние 100 лет магнитный полюс в Южном полушарии переместился почти на 900 км и вышел в Южный океан.
Новейшие данные по состоянию арктического магнитного полюса (движущегося по направлению к Восточно-Сибирской мировой магнитной аномалии через Северный Ледовитый океан) показали, что с 1973 по 1984 год его пробег составил 120 км, с 1984 по 1994 год — более 150 км. Хотя эти данные расчетные, они подтверждены замерами северного магнитного полюса.
После 1831 года, когда положение полюса было зафиксировано впервые, к 2019 году полюс сместился уже более чем на 2 300 км в сторону Сибири и продолжает двигаться с ускорением.
Скорость его перемещения увеличилась с 15 км в год в 2000 году до 55 км в год в 2019 году. Такой быстрый дрейф приводит к необходимости более частой корректировки навигационных систем, использующих магнитное поле Земли, например, в компасах в смартфонах или в резервных системах навигации кораблей и самолетов.
Напряженность земного магнитного поля падает, причем неравномерно. За последние 22 года она уменьшилась в среднем на 1,7 %, а в некоторых регионах, — например в южной части Атлантического океана, — на 10%. В некоторых местах напряженность магнитного поля, вопреки общей тенденции, даже возросла.
Ускорение движения полюсов (в среднем на 3 км/год) и движение их по коридорам инверсии магнитных полюсов (эти коридоры позволили выявить более 400 палеоинверсий) позволяет предположить, что в данном перемещении полюсов следует усматривать не экскурс, а очередную инверсию магнитного поля Земли.
Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
где \( q \) – заряд частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( \alpha \) – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции \( B_\perp \) входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Если заряд частицы отрицательный, то направление силы изменяется на противоположное.
Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы
В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.
Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:
где \( m \) – масса частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( q \) – заряд частицы.
В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:
Угловая скорость движения заряженной частицы:
Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы
Если вектор скорости направлен под углом \( \alpha \) (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.
В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, \( \vec{v}_2 \), параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – \( T \).
Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом \( h=v_2T \).
Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:
Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».
Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:
- сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
- изобразить силы, действующие на заряженную частицу;
- определить вид траектории частицы;
- разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
- составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
- выразить силы через величины, от которых они зависят;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Математическое представление
Магнитное поле в макроскопическом описании представлено двумя различными векторными полями, обозначаемыми как H и B.
H называется напряжённостью магнитного поля; B называется магнитной индукцией. Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H).
Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля. Аналогично, в единый тензор объединяются величины H и электрическая индукция D. В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.
Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС — полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B, хотя бы потому, что именно через него прямо выражается сила Лоренца.
Единицы измерения
Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС — в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10−4 Тл и 1 Тл = 1·104 Гс.
Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС. Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715459 А/м.
Что такое магнитная цепь?
Магнитной цепью называется, соединение магнетиков, по которым замыкается магнитный поток. То есть сердечник, на который намотан любой дроссель, трансформатор, катушка индуктивности и т.д. является магнитной цепью. Более того если веществом такого сердечника является воздух (то есть катушки индуктивности не имеющие каркаса), то и он является магнитной цепью. Очень часто магнитную цепь называют магнитопроводом, что по сути так и есть, сердечник проводит магнитное поле, также как и проводник проводит электрический ток. Более того на магнитные цепи распространяются законы электрического тока: закон Ома, правила Кирхгофа и так далее, но об этом ниже.
Магнитные цепи бывают однородные и неоднородные. Однородными называют магнитные цепи, которые на протяжении всей своей длины изготовлены из одного материала (то есть имеет одинаковую магнитную проницаемость) и одинаковое поперечное сечение. Если хотя бы одно из этих условий не выполняется, то такая магнитная цепь называется неоднородной.
Также различают разветвлённые и неразветвлённые магнитные цепи. То есть не разветвлённые цепи состоят из одного контура, а разветвлённые, соответственно, состоят из нескольких контуров, по которым замыкается магнитный поток. Разветвлённые цепи могут быть симметричные и несимметричные. У симметричных цепей магнитный поток каждого контура одинаков.
Советуем изучить — Соединительные муфты для силовых кабелей
Токи Фуко
Основная статья: Токи Фуко
Токи Фуко́ (вихревые токи) — замкнутые электрические токи в массивном проводнике, возникающие при изменении пронизывающего его магнитного потока. Они являются индукционными токами, образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца, магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи.
Как работает компас
Кто не видел компас? Небольшая такая вещица, похожая на часы с одной стрелкой. Крутишь ее, вертишь, а стрелка упрямо разворачивается в одну сторону. Стрелка компаса представляет собой магнит, свободно вращающийся на игле. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные – отталкиваются. Наша планета также является таким магнитом. Сила его невелика, ее недостаточно, что бы проявиться на тяжелом магните. Однако легкая стрелка компаса, уравновешенная на игле поворачивается и под влиянием небольшого магнитного поля.
спортивный компас
Что бы стрелка компаса не болталась, а четко показывала направление вне зависимости от тряски, она должна быть достаточно сильно намагничена. В спортивных компасах колбу со стрелкой заливают жидкостью. Неагрессивной для пластмассовых и металлических частей, не замерзающей при зимних температурах. Пузырек воздуха, оставленный в колбе, несет в себе функции указателя уровня, для ориентации компаса в горизонтальной плоскости.
Первенство в изучении магнитного поля Земли принадлежит английскому ученому Уильяму Гильберту. В своей книге «О магните, магнитных телах и большом магните – Земле», изданной в 1600 году он представил Землю в виде гигантского постоянного магнита, ось которого не совпадает с осью вращения Земли. Угол между осью вращения и магнитной осью называют магнитным склонением.
В результате такого несовпадения, говорить, что стрелка компаса всегда указывает на север, не совсем верно. Она указывает на точку, находящуюся на расстоянии в 2100 км от северного полюса, на острове Соммерсет (его координаты 75°,6 с. ш., 101° з. д. – данные на 1965 г.) Магнитные полюса Земли медленно дрейфуют. Кроме такой ошибки в направлении стрелки (будем называть ее систематической), нельзя также забывать о других причинах неправильной работы компаса:
- Металлические предметы или магниты, находящиеся вблизи компаса отклоняют его стрелку
- Электронные приборы, являющиеся источниками электромагнитных полей
- Залежи полезных ископаемых – металлических руд
- Магнитные бури, происходящие в годы сильной активности солнца, искажают магнитное поле Земли.
А теперь, попробуйте ответить на вопросы для сообразительных:
- Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?
- Куда показывает стрелка, когда компас находится в районе магнитного полюса?
- Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?
А пока Вы размышляете, приведу несколько интересных фактов о магнитном поле Земли.
Оказывается, оно ослабевает примерно на 0,5% каждые 10 лет. По различным подсчетам, оно исчезнет через 1-2 тысячи лет. Предполагается, что в этот момент будет происходить переполюсовка магнита – Земли. После чего поле снова начнет нарастать, но северный и южный магнитный полюса поменяются местами. Считается, что такое с нашей планетой происходило уже огромное количество раз.
Оказывается, что перелетные птицы также ориентируются “по компасу”, точнее, магнитное поле Земли служит им ориентиром. Недавно ученые узнали, что у птиц в области глаз располагается маленький магнитный “компас” — крохотное тканевое поле, в котором расположены кристаллы магнетита, обладающие способностью намагничиваться в магнитном поле.
Простейший компас можно изготовить самостоятельно. Для этого надо оставить рядом с магнитом швейную иглу на несколько дней. После этого игла намагнитится. Смочив ее жиром или маслом, аккуратно опустите иглу на поверхность налитой в чашку воды. Жир не даст ей утонуть, и игла развернется с севера на юг (ну или наоборот :).
Впечатлились? Вот теперь, можете проверить свои ответы на вопросы:
- Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?– Северный конец стрелки будет показывать.. на юг, а южный – на север!
- Куда показывает стрелка, когда компас находится в районе магнитного полюса?– оказывается, стрелка, подвешенная на нити в районе магнитного полюса стремится развернуться… вниз, вдоль магнитных линий Земли!
- Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?– придешь на северный магнитный полюс! Попробуйте проследить свой путь на глобусе, очень интересный маршрут получается.
а так мог выглядеть морской компас на корабле Колумба
Надеемся, вам понравился этот материал. Если да, то будем делать больше таких разных!