Почему на электрических схемах ток течет от + к -, а в реальном проводнике электроны движутся к аноду?

Цветное обозначение проводов «плюс» и «минус»

Во избежание короткого замыкания в сети провода, «плюс» и «минус» нельзя путать ни в коем случае. Маркировка электропроводки необходима для быстроты и легкости определения напряжения. Это является одним из требований ПУЭ.

Для точного обозначения голубого или зеленого цвета, а «плюс» – коричневого, красного, черного или белого цвета. Если в кабеле 3 проводника и один желтый с продольными зелеными линиями, то это – заземление.

Маркировка проводов по цвету

Важно! Перед началом работы лучше проверить все провода на наличие напряжения, несмотря на маркировки по цвету, чтобы избежать опасности короткого замыкания или удара током. Прокладывать проводку мог неопытный электрик или человек, не имеющий представление о маркировке, и цвета могут не соответствовать

Вам это будет интересно Все об скважности сигнала

Существует два вида тока в электричестве. Постоянный ток не может быть передан на большое расстояние, поэтому в быту используют переменный ток. Постоянный ток используют в следующих направлениях:

  • В промышленности, строительном оборудовании, строительстве, сельском хозяйстве;
  • В городских транспортных средствах (трамваи, троллейбусы, метро, поезда);
  • На электрических подстанциях, где он трансформируется в переменный ток, и его передают потребителю.

Важно! Только два проводника используется в сетях постоянного тока. Здесь не бывает фазы или ноля, только «плюс» и «минус»

В данном случае, используют «плюс» с красным цветом, а синим обозначают провод с «минусом».

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема

Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,. диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Проводимость металлов

Как уже отмечалось в прошлой главе, металлы являются самой распространенной средой, проводящей электрический ток. И носителями зарядов являются свободные электроны. В связи с этим существует особая терминология, в соответствии с которой проводимость металлов называется электронной проводимостью, а сами электроны металла – электронами проводимости. Этот факт ни в коей мере не постулировался, а был проверен и доказан независимо многими учеными разными методами. Например, немецкий физик Карл Рикке проводил опыт по пропусканию тока в 0,1 А в течении года через три отполированных цилиндра: одного алюминиевого и двух медных. По истечению эксперимента (а за это время по цепи прошел огромный заряд в ) никаких изменений в структуре цилиндров не произошло, за исключением небольшой диффузии (рис. 1). А если бы носителями заряда были не электроны, а ионы, то тогда был бы перенос вещества одного цилиндра в вещество другого, и, конечно же, в результате столь длительного эксперимента, химическое строение цилиндров изменилось бы.

Рис. 1. Схема опыта Рикке

Еще одним опытом по подтверждению электронной проводимости металлов стал опыт 1912 года российских ученых Мангельштама и Папалекси, спустя небольшое время проведенный также англичанами Стюартом и Толменом. В ходе этого опыта катушка с большим количеством витков быстро вращалась, а затем резко тормозилась. В результате чего замкнутый вместе с ней в цепь гальванометр показывал наличие небольшого тока (рис. 2).

Рис. 2. Схема опыта Мангельштама-Папалекси

Дело в том, что вместе с раскручиваемой катушкой вращаются, конечно же, и находящиеся в металле электроны. Когда же катушка тормозится, электроны некоторое время продолжают двигаться внутри катушки по инерции, производя таким образом ток.

Сверхпроводимость

Определение. Сверхпроводимость – явление, когда сопротивление проводника становится близким к нулю.

Открытию явления сверхпроводимости предшествовало получение в 1908 году голландцем Камерлингом Оннесом (рис. 4) жидкого гелия. Помещая образец проводника в жидкий гелий, стало возможным наблюдать поведение проводников при сверхнизких температурах (близко к 0 ). И в 1911 году Оннес установил, что ртуть при температуре около 4 К резко приобретает сопротивление, равное нулю.

Рис. 4. Камерлинг Оннес (Источник)

Его опытам с ртутью предшествовали опыты с платиной, в результате которых он установил, что чем чище вещество (чем меньше в нем примесей), тем быстрее уменьшается его сопротивление с уменьшением температуры. Благодаря жидкому состоянию ртути при нормальных условиях, этот металл очень легко было очистить от примесей. И была установлена следующая зависимость удельного сопротивления ртути от низких температур: линейное снижение прерывается скачком к нулю (рис. 5):

Рис. 5.

Явление сверхпроводимости объясняется с точки зрения квантовой физики.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной — только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.


Основные характеристики переменного тока

ФИЗИКА

§ 35. Направление тока и направление линий его магнитного поля

На рисунке 94 показано расположение магнитных стрелок вокруг проводника с током, расположенного перпендикулярно плоскости чертежа. Из рисунка видно, что изменение направления тока приводит к повороту всех магнитных стрелок на 180°. Причём в обоих случаях оси стрелок располагаются по касательным к магнитным линиям.

Рис. 94. Направление линий магнитного поля, созданного проводником с током, зависит от направления тока в проводнике

Следовательно, направление линий магнитного поля тока зависит от направления тока в проводнике.

Эта связь может быть выражена правилом буравчика (или правилом правого винта), которое заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока (рис. 95, 96).

Рис. 95. Применение правила буравчика: проводник с током расположен перпендикулярно плоскости чертежа

Рис. 96. Применение правила буравчика: проводник с током расположен в плоскости чертежа

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля — направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки. Это правило формулируется так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида (рис. 97).

Рис. 97. Определение направления линий магнитного поля внутри соленоида

Вы уже знаете, что магнитное поле соленоида (см. рис. 90) подобно полю постоянного полосового магнита (см. рис. 88). Соленоид, как и магнит, имеет полюсы: тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, — южным.

Зная направление тока в соленоиде, по правилу правой руки можно определить направление магнитных линий поля внутри него, а значит, и его магнитные полюсы.

И наоборот, по направлению магнитных линий поля внутри соленоида или расположению его полюсов можно определить направление тока в витках соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре витка с током.

Вопросы

  1. Опишите опыт, подтверждающий связь между направлением тока в проводнике и направлением линий магнитного поля, созданного проводником.
  2. Сформулируйте правило буравчика.
  3. Что можно определить, используя правило буравчика?
  4. Сформулируйте правило правой руки.
  5. Что можно определить с помощью правила правой руки?

Упражнение 32

  1. На рисунке 98 изображён проволочный прямоугольник, направление тока в нём показано стрелками. Перечертите рисунок в тетрадь и, пользуясь правилом буравчика, начертите вокруг каждой из его четырёх сторон по одной магнитной линии, указав стрелкой её направление.

    Рис. 98

  2. Определите направление тока в катушке и полюсы источника тока (рис. 99), если при прохождении тока в катушке возникают указанные на рисунке магнитные полюсы.

    Рис. 99

  3. Направление тока в витках обмотки подковообразного электромагнита показано стрелками (рис. 100). Определите полюсы электромагнита.

    Рис. 100

  4. Параллельные провода, по которым текут токи одного направления, притягиваются, а параллельные пучки электронов, движущихся в одном направлении, отталкиваются. В каком из этих случаев взаимодействие обусловлено электрическими силами, а в каком — магнитными? Почему вы так считаете?

Базовые понятия о электричестве

ПодробностиКатегория: Введение

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе.Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля.

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

Важно

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Что такое ток, напряжение и сопротивление

Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.

Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.

Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:

  • E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 – разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Электролиз в домашних условиях

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U )

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.

Будет интересно Что такое короткое замыкание

Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.

Источники электрической энергии

Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

  • Ток – Ампер (А)
  • Напряжение – Вольт (В)
  • Сопротивление – Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Откуда берется электрический ток

Движение заряженных частиц появляется в результате действия, производимого аккумуляторами, батареями, генераторами и другими устройствами, преобразующими различные виды энергии в электрическую. Закон сохранения энергии наглядно действует в процессе таких преобразований.

Сами частицы начинают двигаться, когда цепь становится замкнутой, а в проводнике возникает электрическое поле, оказывающее определенное воздействие на свободные электроны. В связи с этим было установлено, что все источники тока обладают установленной электродвижущей силой или ЭДС.

Электроны не появляются из источников тока, они присутствуют в самих проводниках и, являясь свободными, начинают двигаться под действием созданного поля. В качестве наиболее яркого сравнительного примера выступает насос перекачивающий жидкость в трубах, замкнутых между собой. В зависимости от диаметра труб и количества разветвлений, жидкость может двигаться по ним с большей или меньшей скоростью. Эти свойства в полной мере характеризуют течение тока, которое изменяется в соответствии с сечением проводника.

На практике это выглядит следующим образом. Провод, сечением 1,5 мм2, рассчитан на максимальную силу тока в 16 А. К нему может быть подключена нагрузка не более 3-3,5 кВт. При подключении более мощного оборудования проводник не выдержит и выйдет из строя.

Разобравшись с источниками тока, необходимо определить его направление, которое приняли ученые после проведенных исследований в этой области. Условно было принято направление движения положительных зарядов, поскольку ток от положительного полюса движется к отрицательному полюсу источника тока.