Вход усилителя
Вход усилителя – это клеммы Х1 и Х2.
Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.
Фильтрация входного сигнала
Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.
По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.
Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.
Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.
Что такое транзистор?
В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.
Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.
Устройство
Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.
Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.
Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.
Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.
Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.
На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.
Базовый принцип работы
В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.
На рисунке 2 показана схема, объясняющая принцип работы триода.
Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.
Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.
Работу устройства в режиме электронного ключа можно понять из рисунка 3.
Обозначение на схемах
Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.
На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.
Виды усилителей по полосе пропускания
По ширине полосы пропускания усилители делятся на:
Усилители низкой частоты
Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.
Широкополосные усилители
Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.
Узкополосные усилители
Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.
Схема с эмиттерной стабилизацией
В зарубежной литературе такую схему называют схемой с Н-смещением (конфигурация схемы соответствует букве Н). Основная идея, реализованная в схеме, состоит в том, чтобы зафиксировать ток iэ и через это ток iк ( iк = iэ ). С указанной целью в цепь эмиттера включают резистор Rэ и создают на нем практически постоянное напряжение uRэ. При этом оказывается, что iэ= uRэ/ Rэ= const. Для создания требуемого напряжения uR используют делитель напряжения на резисторах R1 и R2. Сопротивления R1и R2 выбирают настолько малыми, что величина тока iб практически не влияет на величину напряжения uR2. При этом uR2= Eк · [ R2/ ( R1+ R2)] В соответствии со вторым законом Кирхгофа uRэ= uR2– uб
Различают следующие режимы работы транзистора (классы работы): А, АВ, В, С и D.
Рассматриваемые RС-усилители обычно работают в режиме А.
- В режиме «А» ток коллектора всегда больше нуля (iк > 0). При этом он увеличивается или уменьшается в зависимости от входного сигнала.
- В режиме «В» Iкн = 0, поэтому ток коллектора может только увеличиваться. При синусоидальном входном сигнале в цепи коллектора протекают положительные полуволны тока.
- Режим «АВ» является промежуточным между режимами А и В.
- В режиме «С» на вход транзистора подается начальное запирающее напряжение, поэтому в цепи коллектора в каждый период входного сигнала ток протекает в течение времени меньшего, чем половина периода.
- Режимом «D» называют ключевой режим работы (транзистор находится или в режиме насыщения, или в режиме отсечки).
Схема усилителя.
В качестве эксперимента соберем простой усилитель на одном транзисторе и разберем его работу.
В коллекторную цепь транзистора VT1
включим высокоомный электромагнитный телефонBF2 , между базой и минусом источника питанияGB установим резисторRб , и развязывающий конденсаторCсв , включенный в базовую цепь транзистора.
Конечно, сильного усиления от такого усилителя мы не услышим, да и чтобы услышать звук в телефоне BF1
его придется очень близко преподнести к уху. Так как для громкого воспроизведения звука нужен усилитель как минимум сдвумя-тремя транзисторами или так называемыйдвухкаскадный усилитель. Но чтобы понять сам принцип усиления, нам будет достаточно и усилителя, собранного на одном транзисторе илиоднокаскадном усилителе.
Усилительным каскадом
принято называть транзистор с резисторами, конденсаторами и другими элементами схемы, обеспечивающими транзистору условия работы как усилителя.
Транзисторный усилитель
Транзистор действует как усилитель, повышая силу слабого сигнала. Напряжение смещения постоянного тока, приложенное к основанию соединения эмиттера, заставляет его оставаться в прямом смещенном состоянии. Это прямое смещение поддерживается независимо от полярности сигнала. На рисунке ниже показано, как выглядит транзистор при подключении в качестве усилителя.
Низкое сопротивление входной цепи позволяет любому небольшому изменению входного сигнала привести к значительному изменению выходного сигнала. Ток эмиттера, вызванный входным сигналом, вносит ток коллектора, который, когда протекает через нагрузочный резистор R L , приводит к значительному падению напряжения на нем. Таким образом, небольшое входное напряжение приводит к большому выходному напряжению, что показывает, что транзистор работает как усилитель.
пример
Пусть произойдет изменение входного напряжения на 0,1 В, что дополнительно приведет к изменению тока эмиттера на 1 мА. Этот ток эмиттера, очевидно, вызовет изменение тока коллектора, которое также будет равно 1 мА.
Сопротивление нагрузки 5 кОм, помещенное в коллектор, будет создавать напряжение
5 кОм × 1 мА = 5 В
Следовательно, наблюдается, что изменение на 0,1 В на входе дает изменение на 5 В на выходе, что означает, что уровень напряжения сигнала усиливается.
Работа схемы усилителя.
При подаче напряжения питания в схему, на базу транзистора через резистор Rб
поступает небольшое отрицательное напряжение 0,1 — 0,2В, называемоенапряжением смещения . Это напряжениеприоткрывает транзистор, и через эмиттерный и коллекторный переходы начинает течь незначительный ток, который как бы переводит усилитель в дежурный режим, из которого он мгновенно выйдет, как только на входе появится входной сигнал.
Без начального
напряжения смещения эмиттерный p-n переход будетзакрыт и, подобно диоду, «срезать » положительные полупериоды входного напряжения, отчего усиленный сигнал будет искаженным.
Если на вход усилителя подключить еще один телефон BF1
и использовать его как микрофон, то телефон будет преобразовывать звуковые колебания в переменное напряжение звуковой частоты, которое через конденсаторСсв будет поступать на базу транзистора.
Здесь, конденсатор Ссв
выполняет функцию связующего элемента между телефономBF1 и базой транзистора. Он прекрасно пропускает напряжение звуковой частоты, но преграждает путь постоянному току из базовой цепи к телефонуBF1 . А так как телефон имеет свое внутреннее сопротивление (около 1600 Ом), то без этого конденсатора база транзистора через внутреннее сопротивление телефона была бы соединена с эмиттером по постоянному току. И естественно, ни о каком усилении сигнала речи и быть не могло.
Теперь, если начать говорить в телефон BF1
, то в цепиэмиттер-база возникнут колебания электрического тока телефонаIтлф , которые и будут управлять большим током в коллекторной цепи транзистора. И уже этот усиленный сигнал, преобразованный телефономBF2 в звук, мы и будем слышать.
Сам процесс усиления сигнала можно описать следующим образом. При отсутствии напряжения входного сигнала Uвх
, в цепях базы и коллектора текут небольшие токи (прямые участки графикова ,б ,в ), определяемые напряжением источника питания, напряжением смещения на базе и усилительными свойствами транзистора.
Как только в цепи базы появляется входной сигнал (правая часть графика а
), то соответственно ему начинают изменяться и токи в цепях транзистора (правая часть графиковб ,в ).
Во время отрицательных
полупериодов, когда отрицательное входноеUвх и напряжение источника питанияGB суммируются на базе — токи цепейувеличиваются .
Во время же положительных
полупериодов, кода напряжение входного сигналаUвх и источника питанияGB положительны, отрицательное напряжение на базе уменьшается и, соответственно, токи в обеих цепях такжеуменьшаются . Вот таким образом и происходит усиление по напряжению и току.
Если же нагрузкой транзистора будет не телефон а резистор, то создающееся на нем напряжение переменной составляющей усиленного сигнала можно будет подать во входную цепь второго транзистора для дополнительного усиления.
Один транзистор может усилить сигнал в 30 – 50 раз.
На рисунке ниже показана зависимость тока коллектора от тока базы.
Например. Между точками А и Б ток базы увеличился от 50 до 100 мкА (микроампер), то есть составил 50 мкА, или 0,05 mA. Ток коллектора между этими точками возрос от 3 до 5,5 mA, то есть вырос на 2,5 mA. Отсюда следует, что усиление по току составляет: 2,5 / 0,05 = 50 раз.
Точно также работают транзисторы структуры n-p-n
. Но для них полярность включения источника питания, питающей цепи базы и коллектора меняется напротивоположную . То есть на базу и коллектор подается положительное, а на эмиттер отрицательное напряжения.
Запомните
: для работы транзистора в режиме усиления на его базу, относительно эмиттера, вместе с напряжениемвходного сигнала обязательно подается постоянноенапряжение смещения , открывающее транзистор.
Для германиевых
транзисторов отпирающее напряжение составляет не более 0,2 вольта, а длякремниевых не более 0,7 вольта.
Напряжение смещения на базу не подают лишь в том случае, когда эмиттерный переход транзистора используют для детектирования радиочастотного модулированного сигнала.
Питание коллектора
Цепи питания коллектора
содержат элементы, показанные ниже.
В многокаскадных усилителях коллекторные цепи всех каскадов подключаются параллельно к одному общему источнику E0C. В этом случае цепь питания коллектора содержит развязывающий фильтр RфCф. Назначение такого фильтра – устранить паразитную обратную связь через общий источник питания. При питании от сети переменного тока, кроме того, уменьшаются пульсации напряжения питания. Резистор Rф включают последовательно с нагрузкой RН, и на нём теряется часть коллекторного напряжения. Поэтому рекомендуется сопротивление Rф выбирать исходя из допустимого падения напряжения:
Напряжение между коллектором и эмиттером транзистора UCE выбирается в пределах
При этом минимальное значение UC не должно быть менее 0,5 В, иначе рабочая точка переходит в область насыщения и возрастают нелинейные искажения.
Принцип действия транзистора
В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.
В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.
Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.
В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.
Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.
Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.
Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.
При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.
Типы биполярных транзисторов.
Диодные электронные ключи
Простейший тип электронных ключей – диодные ключи. Схема диодного ключа, статическая передаточная характеристика, ВАХ и зависимость дифференциального сопротивления от напряжения на диоде показаны на рисунке:
Принцип работы диодного электронного ключа основан на изменении величины дифференциального сопротивления полупроводникового диода в окрестностях порогового значения напряжения на диоде Uпор. На рисунке «в» показана вольт-амперная характеристика полупроводникового диода, на которой показано значение Uпор. Это значение находится на пересечении оси напряжений с касательной, проведенной к восходящему участнику вольт-амперной характеристики.
На рисунке «г» показана зависимость дифференциального сопротивления от напряжения на диоде. Из рисунка следует, что в окрестности порогового напряжения 0,3 В происходит резкое изменение дифференциального сопротивления диода с крайними значениями 900 и 35 Ом (Rmin = 35 Ом, Rmax = 900 Ом).
В состоянии «включено» диод открыт и , Uвых ≈ Uвх.
В состоянии «выключено» диод закрыт и , Uвых ≈ Uвх · Rн / Rmax<вх
С целью уменьшения времени переключения используемые диоды с малой емкостью перехода порядка 0,5-2 пФ, при этом обеспечивается время выключения порядка 0,5-0,05 мкс.
Диодные ключи не позволяют электрически разделить управляющею и управляемую цепи, что часто требуется в практических схемах.
Схема с фиксированным током базы
(рис. 2.14).
На подобных схемах источник напряжения Ек обычно не изображают.
В соответствии со вторым законом Кирхгофа iк· Rк + uкэ− Ек = 0 Отсюда находим ток коллектора iк: iк= − ( 1 / Rк ) · uкэ+ ( 1 / Rк ) · Ек что соответствует линейной зависимости вида у = а · х + b. Это уравнение описывает так называемую линию нагрузки (как и для схемы с диодом).
Изобразим выходные характеристики транзистора и линию нагрузки (рис. 2.15).
Отсюда находим ток базы iб: iб = − uбэ / Rб + Ек / Rб
Будем пренебрегать напряжением uбэ так как обычно uбэ << Ек. Тогда iб = Ек / Rб
Таким образом, в рассматриваемой схеме ток iб задается величинами Ек и Rб (ток «фиксирован»). При этом iк= βст · iб + Íко
Пусть iб = iб2. Тогда HPT займет то положение, которое указано на рис. 2.15. Легко заметить, что самое нижнее возможное положение начальной рабочей точки соответствует точке Y (режим отсечки, iб = 0), а самое верхнее положение — точке Z (режим насыщения, iб > iб4).
Схему с фиксированным током базы используют редко по следующим причинам:
- при воздействии дестабилизирующих факторов (например, температуры) изменяются величины βст и Íко, что изменяет ток Iкн и положение начальной рабочей точки.
- для каждого значения βст необходимо подбирать соответствующее значение Rб, что нежелательно при использовании как дискретных приборов (т. е. приборов, изготовленных не по интегральной технологии), так и интегральных схем.
https://youtube.com/watch?v=00KGIeCeZbY
https://youtube.com/watch?v=dX9KMFFXTX4
С общим эмиттером (ОЭ)
Это наиболее распостранённая схема включения, которая даёт высокое усиление как по напряжению, так и по току, а следовательно и по мощности, благодаря чему она имеет преимущества перед схемами с ОК и ОБ. Схема имеет невысокое (порядка сотен Ом) входное сопротивление, но это всё же позволяет применять в ней переходные конденсаторы относительно небольшой ёмкости. Выходное сопротивление высокое, и достигает порядка десятков кОм, что можно отнести к недостаткам. Схема с ОЭ изменяет фазу сигнала на выходе по сравнению с фазой сигнала на входе на 180 градусов. Для её работы достаточно иметь всего лишь один источник питания. Применяется в усилителях низкой частоты, различных устройствах автоматики и т.п..
Устройство и принцип работы тиристора (тринистора)
Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.
Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:
Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.
Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн
Iа – ток анода (силовой ток в цепи анод-катод тиристора ); Uак – напряжение между анодом и катодом; Iу – ток управляющего электрода ( в реальных схемах используют импульсы тока ); Uук – напряжение между управляющим электродом и катодом; Uпит – напряжение питания.
Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.
Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.
Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.
И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):
Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы. I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta, несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
I_к = \beta I_б
Двигаемся дальше!
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!
И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.
Питание коллектора
Цепи питания коллектора
содержат элементы, показанные ниже.
В многокаскадных усилителях коллекторные цепи всех каскадов подключаются параллельно к одному общему источнику E0C. В этом случае цепь питания коллектора содержит развязывающий фильтр RфCф. Назначение такого фильтра – устранить паразитную обратную связь через общий источник питания. При питании от сети переменного тока, кроме того, уменьшаются пульсации напряжения питания. Резистор Rф включают последовательно с нагрузкой RН, и на нём теряется часть коллекторного напряжения. Поэтому рекомендуется сопротивление Rф выбирать исходя из допустимого падения напряжения:
Напряжение между коллектором и эмиттером транзистора UCE выбирается в пределах
При этом минимальное значение UC не должно быть менее 0,5 В, иначе рабочая точка переходит в область насыщения и возрастают нелинейные искажения.
Устройство и принцип действия
Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).
Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.
Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).
Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.
Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).
Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.
Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.
Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины — ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.
У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.
В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.
Watch this video on YouTube
Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран — транзистором, вода — Iк, степень поворота ручки крана — Iб. Для увеличения напора нужно немного повернуть кран — совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.
Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.
Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.