Какие свойства стабилитрона оцениваются дифференциальным сопротивлением

Содержание

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «

» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Вы здесь

Главная › Инженеру-конструктору › 3. Электрооборудование, электроустановки › 3. Раздел 3.

        Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5 и регулирующий транзистор V6. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения Uн и максимального тока нагрузки Iн. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем — выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):

Uвып = Uн + 3,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып — Uн) Iн,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором — больше Uвып, а максимально допустимый ток коллектора — больше Iн.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min,

где: h21Эmin — минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..

5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.

6. Подсчитывают сопротивление резистора R1:

R1 = (Uвып — Uст) / (Iб max + Iст min),

Здесь R1 — сопротивление резистора R1, Ом; Uст — напряжение стабилизации стабилитрона, В; Iб.max — вычисленное значение максимального тока базы транзистора, мА; Iст.min — минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА). .

7. Определяют мощность рассеяния резистора R1:

PR1 = (Uвып — Uст)2 / R1,

        Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности — такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор V7 малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в h21Э раз и применить, соответственно, маломощный стабилитрон.

        В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.

Parametric stabilizer

Инженерная программа, предназначенная для расчёта параметрических стабилизаторов на кремниевых или газоразрядных стабилитронах, используемых в источниках питания. Методика расчёта была разработана автором программы и опубликована в статье «Москатов Е. Расчет параметрических стабилизаторов. — Радиомир, 2006, №7, с. 22 — 25».

В справке по программе даны ответы на типовые вопросы, приведены справочные данные кремниевых и газоразрядных стабилитронов. Статус лицензии — donationware (класс freeware), то есть программу можно использовать свободно, и оплата не обязательна. Все представленные для скачивания материалы выполнены на русском языке.

Загрузить материалы Дополнительная информация
В данной финальной версии программы были введены дополнительные проверки на переполнение исходных данных. Введено сохранение данных. Интерфейс программы стал более эргономичным. Все доступные рисунки, пиктограммы и значки были переделаны с целью удаления из исполняемого файла, файла справки и инсталлятора любых материалов, созданных другими авторами.

Программа создана в ОС Windows XP Home Edition с использованием лицензионного ПО. Были использованы программы: Borland C++Builder 6.0 personal (для написания части кода и отлаживания реализации алгоритма), Borland Turbo C++ 10.0 (для компиляции исполняемого файла), Microsoft Office Visio (для начертания принципиальных схем и рисунков), OpenOffice.org (для написания справки по программе), Sea Monkey (для создания html-файлов справки при помощи «компоновщика»), htm2chm (для компиляции html-файлов в chm-файл справки), IrfanView (для уменьшения числа цветов в растровых изображениях), Slow View (для придания эффекта 3D-кнопки на рисунках), Inno Setup (для создания инсталлятора), FET XP Authenticode (для электронной подписи файлов).

Расширение запакованного файла — EXE, размер — 782 Кбайт.

Известные проблемы и особенности работы.

1. В безопасном режиме текст меню на русском языке отображается не верно (спецсимволами); в остальных частях программы текст отображается корректно. Решение проблемы: не использовать программу в безопасном режиме или использовать англоязычную версию программы, если такая существует.

2. В Windows 95 программа работать будет, однако будет нельзя просмотреть файл справки встроенными в ОС средствами. Использование средства просмотра chm-файла решит данную проблему.

3. Если разрешение изображения монитора будет менее 800 × 600 точек, то элементы интерфейса программы будут сдвинуты на форме. Решение проблемы: не использовать программу при столь низком разрешении монитора.

Файл справки по программе «Parametric stabilizer 4.0.0.0». Его можно распечатать. Расширение файла — PDF, размер — 135 Кбайт.
Исходные тексты программы «Parametric stabilizer 4.0.0.0», которые можно проанализировать в среде Borland Developer Studio. Расширение файла — ZIP, размер — 134 Кбайт.

История основных версий программы «Parametric stabilizer». Расширение файла — TXT, размер — 3,5 Кбайт.

Рекомендуемые требования к оборудованию

Компьютер с процессором семейств Intel Pentium / Celeron или совместимым с ними процессором, тактовая частота которого составляет не менее 200 МГц, или более мощным.

Оперативная память: 32 Мбайт.

Свободное место на диске: 2 Мбайт.

Видеоплата и монитор с разрешением не менее 800 × 600 точек.

Клавиатура, мышь или другое указательное устройство.

Рекомендуемые требования к системному программному обеспечению

Операционная система Microsoft Windows 98 Second Edition, Microsoft Windows Millennium, Windows 2000 Professional, Windows XP Home Edition, Windows XP Professional, Windows 2003 Server, Windows Vista Starter, Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista Business, Windows Vista Enterprise, Windows Vista Ultimate.

Так как программа имеет русскоязычный интерфейс, операционная система должна обеспечивать необходимую языковую поддержку.

Скриншот программы «Parametric stabilizer 4.0.0.0»

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются  для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

Вывода ~ подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Это интересно: Как провести расчёт веса и определить конституцию человека: объясняем обстоятельно

Как рассчитать диод

  • Как рассчитать диод
  • Как определить ток светодиода
  • Как узнать ток светодиода
  • — справочник по полупроводниковым диодам;
  • — калькулятор;
  • — лист бумаги;
  • — ручка.
  • Как подобрать диод
  • Как рассчитать транзистор
  • Как узнать напряжение светодиода
  • Как сделать диод
  • Как подобрать резистор для светодиода
  • Как понизить переменное напряжение
  • Как рассчитать электрическую мощность
  • Как рассчитать мощность прибора
  • Как включить светодиод
  • Как включить led подсветку
  • Как рассчитать номинальный ток
  • Как проверить диод мультиметром
  • Как рассчитать электрическую нагрузку
  • Как паять полевой транзистор
  • Как определить анод диода
  • Как по мощности посчитать ток
  • Как определить анод и катод
  • Как определить мощность лампы
  • Как определить полярность электролитического конденсатора
  • Как повышать и понижать напряжение

Источник

Кремниевый диод и его ВАХ

Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.

ВАХ кремниевого и германиевого диода

Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение. В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.

Дифференциальное сопротивление — диод

Предназначены для работы в качестве аттенюатора с регулируемым коэффициентом передачи за счет изменения дифференциального сопротивления диодов в зависимости от проходящего через них тока регулирования.

При меньших токах кремниевые стабилитроны не рекомендуется применять, главным образом из-за роста дифференциального сопротивления диода гд на пробивном участке. При токе 1 ма сопротивление увеличивается в среднем в 2 раза ( а иногда и больше) по сравнению с номинальным значением, что нежелательно в схемах стабилизаторов ( см. гл. Кроме того, при малых токах резко возрастают собственные шумы диода.

Сопротивление переменному току цепи связи включенного ключа равно Л0 2гд, где гя — дифференциальное сопротивление диода в рабочей точке.

Параметр / гцэ, или входное сопротивление транзистора, определяется так же, как дифференциальное сопротивление диода.

Туннельный эффект в МДП — и МДПДМ-структурах.

Для того чтобы нагрузочная прямая пересекала вольт-амперную характеристику в трех точках, сопротивление нагрузки должно быть больше дифференциального сопротивления диода на участке отрицательного сопротивления.

Крутизну характеристики можно рассматривать как дифференциальную или внутреннюю проводимость диода при переменном токе, следовательно, если известно дифференциальное сопротивление диода, то тем самым известна и дифференциальная проводимость, таким образом, крутизна не является независимым параметром диода.

Вольт-амперная характеристика таких диодов зависит от частоты и в определенном диапазоне СВЧ имеет падающий участок, на котором дифференциальное сопротивление диода отрицательно. Снятая на постоянном токе вольт-амперная характеристика диода Ганна аналогична характеристике обыкновенного резистора. Падающий участок вольт-амперной характеристики диода в СВЧ-диапазоне обусловлен внутренними процессами, протекающими в некоторых полупроводниковых материалах при высоких напряженностях электрического поля. Диоды Ганна используются для генерации и усиления колебаний в СВЧ-диапазоне.

Стабилизаторы по.

Если пренебречь сопротивлением нагрузки, тогда Aui / A2 в приведенной формуле определяется коэффициентом деления делителя напряжения R-ЛДИф, при этом значение ЯЯВф является дифференциальным сопротивлением диода в области стабилизации.

Реальные полупроводниковые диоды отличаются определенным разбросом параметров от образца к образцу, а их вольт-амперные характеристики образуют с осью напряжений некоторый угол, величина которого характеризуется дифференциальным сопротивлением диода гя. Таким образом, для получения датчика с симметричной вольт-амперной характеристикой подбор диодов следует делать по трем параметрам / о, В и гк.

Методика построения одной из точек динамической входной характеристики.

В таком варианте начальные смещения на базах составляют / д / 2, а роль R2 ( по отношению к передаче сигнала на базу транзистора Т2) играет дифференциальное сопротивление диода. При достаточно больших токах дифференциальное сопротивление диода значительно меньше сопротивления постоянному току ( см. рис. 2 — 22), поэтому использование диода позволяет усилить связь между базами транзисторов.

Схема отбраковки диодов для импульсных схем. а — принципиальная схема. б — форма входного напряжения t / BX и тока.

Последнее замечание имеет существенное значение при измерении емкости туннельных диодов, так как в этом случае с помощью схемы на рис. 181 можно измерить емкость только в двух точках при E U1H Е U2, где дифференциальное сопротивление диода R — оо. Если амплитуда напряжения на контуре велика, то диод будет либо сильно шунтировать контур, либо в схеме возникнут паразитные колебания.

Особенности проверки в зависимости от вида диода

При производстве современных радиоэлектронных приборов применяется несколько видов диодов:

  • обычные или защитные;
  • светодиоды;
  • диоды Шоттки;
  • стабилитроны;
  • тиристоры и симисторы;
  • инфракрасные;
  • фотодиоды.

Защитные диоды можно встретить в большинстве современных бытовых приборах. Они распространены и являются простейшими элементами схем электрочайников, вентиляторов, блендеров и других облегчающих жизнь устройств.

Область применения светодиодов – всем известные лампы. Они делятся на приборы как бытового и уличного освещения. Диоды Шоттки используются при сборке блоков питания компьютеров, а основной задачей стабилитронов является защита приборов от скачков напряжения, проще говоря, его стабилизация.

Такие диоды, как тиристоры обеспечивают плавный пуск двигателя. Они активно применяются в области автомобилестроения. Симисторы могут пропускать ток в 2-ух разных направлениях.

Инфракрасные встраиваются в ПДУ и оптические контрольно-измерительные приборы. Фотодиоды преобразуют свет, попавший на чувствительную плату, в электросигнал. Они также используются при организации систем уличного освещения.

С помощью мультиметра чаще всего измеряют характеристики светодиодов, обычных полупроводников и диодов Шоттки. Проверка всех этих видов проводится тестером в соответствии с одним и тем же принципом.

Основными причинами неисправности таких полупроводников являются:

  1. Превышение максимально допустимого уровня электрического тока.
  2. Некачественные детали или заводской брак.
  3. Высокое обратное напряжение.
  4. Нарушение инструкции по эксплуатации прибора.

Диагностика выполняет с помощью специального, предназначенного для этого прибора – мультиметра.

Как проверить светодиод, стабилитрон, диод Шоттки мультиметром

Светодиоды проверяются таким же образом, как и силовые диоды – на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление. При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико.

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

Действие стабилитрона

Следующим этапом работы является работа стабилитрона для стабилизации постоянного напряжения в конструкции стабилизатора. Он является главным функциональным звеном. Нельзя забывать, что стабилитроны могут в определенных пределах выдерживать стабильность на некотором постоянном напряжении при обратном подключении. Если подать напряжение на стабилитрон от нуля до стабильного значения, то оно будет повышаться.

Когда оно дойдет до стабильного уровня, то останется постоянным, с небольшим возрастанием. При этом будет увеличиваться сила тока, проходящего по нему.

В рассматриваемой схеме обычного стабилизатора, у которого выходное напряжение должно быть 12 В, стабилитрон определен для величины напряжения 12,6 В, так как 0,6 В будет являться потерей напряжения на переходе транзистора эмиттер – база. Выходное напряжение на приборе будет именно 12 В. А так как мы устанавливаем стабилитрон на величину 13 В, на выходе блока получится примерно 12,4 вольта.

Стабилитрон требует ограничения тока, предохраняющего его от излишнего нагревания. Судя по схеме, эту функцию осуществляет сопротивление R1. Оно включено по последовательной схеме со стабилитроном VD2. Другой конденсатор, выполняющий функцию фильтра, подключен параллельно стабилитрону. Он должен выравнивать возникающие импульсы напряжения. Хотя можно вполне обойтись и без него.

На схеме изображен транзистор VТ1, подключенный с общим коллектором. Такие схемы характеризуются значительным усилением тока, однако при этом по напряжению усиления нет. Отсюда следует, что на выходе транзистора образуется постоянное напряжение, имеющееся на входе. Так как эмиттерный переход забирает на себя 0,6 В, то на выходе транзистора получается всего 12,4 В.

Для того, чтобы транзистор стал открываться, необходим резистор для образования смещения. Такую функцию выполняет сопротивление R1. Если изменять его величину, то можно изменять выходной ток транзистора, а, следовательно, и выходной ток стабилизатора. В качестве эксперимента можно вместо резистора R1 подключить переменный резистор на 47 кОм. Регулируя его можно изменять выходную силу тока блока питания.

В конце схемы стабилизатора напряжения подключен еще один маленький конденсатор электролитического типа С3, который выравнивает импульсы напряжения на выходе стабилизированного устройства. К нему припаян по параллельной схеме резистор R2, который замыкает эмиттер VТ1 на отрицательный полюс схемы.

  • http://radiostorage.net/4667-raschet-parametricheskogo-stabilizatora-napryazheniya-na-tranzistorah.html
  • https://amperof.ru/elektropribory/parametricheskij-stabilizator-napryazheniya.html
  • https://amperof.ru/elektropribory/stabilizator-napryazheniya-na-tranzistore.html
  • https://datagor.ru/theory/bez-pajalnika/3002-raschet-i-analiz-parametricheskogo-stabilizatora-napryazheniya.html
  • http://ostabilizatore.ru/rabota-stabilizatora-na-stabilitrone.html

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Будет интересно Диод 1n4007: характеристики, маркировка и datasheets

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Силовой выпрямительный диод.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Как определить сопротивление диода постоянному току

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.