Стрелочный индикатор уровня звука своими руками. стрелочный индикатор уровня выходного сигнала. индикаторы выходной мощности усилителя

Цифровые мультиметры

Большой популярностью среди профессионалов пользуются цифровые приборы, измеряющие напряжение — мультиметры. Этот универсальный прибор для электрика, он позволяет проверить сразу несколько характеристик электроцепи: напряжение, силу тока, сопротивление. Помимо звуковых и световых сигнализирующих элементов, устройство оснащено цифровым табло.

Дополнительно могут приобретаться специальные токоизмерительные клещи, позволяющие измерять силу тока без повреждения изоляции проводки. Некоторые модели оснащаются термодатчиком для проверки температуры электрооборудования – распределительных шкафов, рубильников, электродвигателей. Такими устройствами, как правило, пользуются те специалисты, которым по роду деятельности приходится бывать на подстанциях со сложным электрооборудованием.

Принцип работы

Все индикаторы уровня построены на основе многокаскадных компараторов.

Компаратор – логический элемент, сравнивающий параметры двух входящих сигналов.

На один канал компаратора подаётся анализируемый сигнал, на второй – опорное напряжение сравнения. Если амплитуда первого выше опорного напряжения – на выходе появляется логическая единица, если ниже – логический ноль.

Работу простейшего компаратора можно продемонстрировать на микросхеме К155ЛН1, единичным кластером которой является элемент «НЕ».

Такая микросхема является простейшим логическим компаратором. При напряжении на входе от 0В до 2,4В (что соответствует логическому нулю) на выходе 2,7В, как только напряжение на входе превысит 2,4В, сигнал на выходе упадёт до ноля вольт.

Существует несколько микросхем для визуализации уровня. Наиболее многофункциональные схемы, на мой взгляд, позволяют создавать микросхемы на архитектуре lm39xx. В эту линейку входит три микросхемы: lm3914, lm3915 и lm3916. Минимальная развязка без труда позволяет создать светодиодный индикатор уровня звука своими руками даже без глубоких познаний в радиоэлектронике.

Все они представляют десяти диапазонный анализатор. Различаются способом дифференциации входного сигнала. У lm3914 это 1В, у lm3915 – 3Дб, у lm3916 — 1Дб.

Схема LED индикатора

Данная схема достаточно хорошо описана на просторах интернета. Здесь лишь вкратце расскажу (перескажу) о ее работе. Индикатор выходной мощности собран на микросхеме LM3915. Десять светодиодов подключены к мощным выходам компараторов микросхемы. Выходной ток компараторов стабилизирован, поэтому отпадает необходимость в гасящих резисторах. Напряжение питания микросхемы может находиться в пределах 6…20 В. Индикатор реагирует на мгновенные значения звукового напряжения. У микросхемы делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в v2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ.

Сигнал снимается непосредственно с нагрузки — акустической системы УМЗЧ — через делитель R*/10k. Указанный на схеме ряд мощностей 0,2-0,4-0,8-1,6-3-6-12-25-50-100 Вт соответствует действительности, если сопротивление резистора R*=5,6 кОм для Rн=2 Ом, R*= 10 кОм для Rн=4 Ом, R*= 18 кОм для Rн=8 Ом и R*=30 кОм для Rн=16 Ом. LM3915 дает возможность легко менять режимы индикации. Достаточно лишь подать на вывод 9 ИМС LM3915 напряжение, и она перейдет с одного режима индикации в другой. Для этого служат контакты 1 и 2. Если их соединить, то ИМС перейдет в режим индикации «Светящийся столбик», если оставить свободными — «Бегущая точка». Если индикатор будет эксплуатироваться с УМЗЧ с иной максимальной выходной мощностью, то нужно подобрать лишь сопротивление резистора R*, чтобы светодиод, подключенный к выводу 10 ИМС, светился при максимальной мощности УМЗЧ.

Как видите, схема проста и не требует сложной настройки. Благодаря широкому диапазону питающих напряжений для ее работы использовал одно плечо импульсного двухполярного блок питания УМЗЧ +15 вольт. На входе сигнала вместо подбора отдельных резисторов R* установил переменное сопротивление номиналом 20 кОм, что сделало индикатор универсальным для акустики разного сопротивления.

Для смены режимов индикации предусмотрел установку перемычки или кнопки с фиксацией. В финале замкнул перемычкой.

Детали:
Плата односторонняя, без металлизации, сделано качественно, паять легко, обозначения деталей и номиналы обозначены:
По фото видно, что плата отличается от платы, отображенной на лоте продавца — есть разъем J3

Инструкция и схема:

Схема в большом разрешении

Когда паял выяснились три непонятки.
1. Не понятно, зачем тут разъем-перемычка J3? В комплекте конструктора нет ни разъема, ни перемычки. При включении как-то непонятно работают только половина светодиодов (красные и ниже). Запаял (закоротил) контакты J3
2. Резистор R9. На распечатке указан 560 Ом. В наборе — 2.2 кОм. Я из старых запасов поставил резистор МЛТ, как указанно в схеме — 560 Ом. Подумал, что китайцы перепутали что-то. При включении постоянно горели два нижних желтых светодиода — D1,D2. Перепаял резистор — взял из набора резистор в 2.2 кОм — стало работать как нужно.

Изменение в схеме — правильный резистор

Питание схемы — 9-12 Вольт. Подал 12 В на питание. Все работает нормально. Подстроечным резистором можно выставить максимально отображаемый уровень сигнала. Минимальный уровень, если подавать на устройство сигнал напряжением 1.9 Вольт:
Отсюда вывод -при штатном напряжении питания 9-12 Вольт индикатор лучше подключать к выходам УНЧ, а не после предварительного усилителя или на вход УНЧ после регулятора громкости.

Шкала свечения светодиодов — логарифмическая. Как индикатор разряда аккумулятора использовать не получится. Если подключить выход с наушников сотового телефона на максимальной громкости на вход, то горят максимум 6 желтых светодиодов.

Дальше решил поэкспериментировать с уменьшением напряжения питания. Вывод — чем меньше напряжение питания — тем чувствительнее устройство. Работало нормально от 5 в — красные светодиоды в этом случае горели и от сотового телефона. Если уменьшить напряжение до 3 вольт, светодиоды тускло горят, но не мигают. Видимо это предел. Так что я бы не запитывал от напряжения, меньше 5 вольт.

Вывод: простой, интересный радиоконструктор. Можно оборудовать им какой-нибудь самодельный УНЧ. Минусы — неудобное крепление платы — только одно крепежное отверстие. Плата (из-за панельки и микросхемы) получается достаточно высокая. Если поставить параллельно две платы, то расстояние между светодиодами обоих каналов будет достаточно большое.

Детали и монтаж

Теперь о радиодеталях: конденсаторы С1 и С2 подберете по своему вкусу, я взял каждый по 22МкФ на 63В(на меньший вольтаж не советую брать для УНЧ с выходом в 100Ватт), резисторы все МЛТ-0.25 или 0.125. Транзисторы все — КТ315, желательно с буквой Б. Светодиоды — любые которые сможете достать.

Рис. 4.Печатная плата индикатора выходной мощности УНЧ для 10 ячеек (кликни для увеличения)

Рис. 5. Расположение компонентов на печатной плате индикатора выходной мощности УНЧ

Все компоненты на печатной плате не обозначал поскольку ячейки идентичны и вы без особых усилий сами разберетесь что и куда впаивать.

В результате моих трудов получились четыре миниатюрных платки:

Рис. 6. Готовые 4 канала индикации для УНЧ мощностью 100 Ватт на канал.

Индикатор перегорания плавкого предохранителя

Еще одна схема индикатора перегрузки представлена на рисунке 3. В тех конструкциях, где установлен плавкий (или иной, например, самовосстанавливающийся) предохранитель, часто требуется визуально контролировать их работу.

Здесь применен двухцветный светодиод с общим катодом и соответственно тремя выводами. Кто на практике испытывал эти диоды с одним общим выводом, знают, что они функционируют несколько иначе, чем ожидается.

Шаблон мышления в том, что казалось бы, зеленый и красный цвета будут появляться у светодиода в общем корпусе соответственно при приложении (в нужной полярности) напряжения к соответственным выводам R или G. Однако, это не совсем так.

Рис. 3. Световой индикатор перегорания предохранителя.

Пока предохранитель FU1 исправен, к обоим анодам светодиода HL1 приложено напряжение. Порог свечения корректируется сопротивлением резистора R1. Если предохранитель обрывает цепь питания нагрузки, то зеленый светодиод гаснет, а красный остается светить (если напряжения питания совсем не пропало).

Поскольку допустимое обратное напряжение для светодиодов мало и ограничено, то для указанной конструкции в схему введены диоды с разными электрическими характеристиками VD1— VD4. То, что к зеленому светодиоду последовательно включен только один диод, а к красному три, объясняется особенностями светодиода AЛC331A, замеченными на практике.

При экспериментах оказалось, что порог напряжения включения красного светодиода меньше, чем у зеленого. Чтобы уравновесить эту разницу (заметную только на практике), количество диодов неодинаково.

При перегорании предохранителя к зеленому светодиоду (G) прикладывается напряжение в обратной полярности. Номиналы элементов в схеме даны для контроля напряжения в цепи 12 В. Вместо светодиода AЛC331A допустимо применять другие аналогичные приборы, например, КИПД18В-М, L239EGW.

Литература: Андрей Кашкаров — Электронные самоделки.

Изготовляя свой усилитель мною было твердо решено сделать по 8−10 ячеечному светодиодному индикатору выходной мощности на каждый канал(4 канала). Схем подобных индикаторов полным-полно, нужно только выбрать под свои параметры. На данный момент выбор чипов, на которых можно собрать индикатор выходной мощности УНЧ, очень большой, ну вот например : КА2283, LB1412, LM3915 и т.п. Что может быть проще чем купить такой чип и собрать схему индикатора ) Я в свое время пошел немножко другим путем.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Цифровой вольтметр на базе модулей ADS1115 и TM1637
      16 февраля 2020
    • Как проверить частотомер в домашних условиях
      16 декабря 2019
    • Амперметр на оптронах
      9 декабря 2019
    • Генератор кварцевый термостатированный
      28 октября 2019
    • Тактовый генератор для PIC контроллеров
      8 октября 2019
    • Зарядное устройство для автомобильных аккумуляторов — 237 264 просмотров
    • Стабилизатор тока на LM317 — 173 394 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 124 783 просмотров
    • Реверсирование электродвигателей — 101 568 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 274 просмотров
    • Карта сайта — 95 949 просмотров
    • Зарядное для шуруповерта — 88 374 просмотров
    • Самодельный сварочный аппарат — 87 711 просмотров
    • Схема транзистора КТ827 — 82 342 просмотров
    • Регулируемый стабилизатор тока — 81 280 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (15)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (34)
    • Импульсные блоки питания (2)
    • Индикаторы (5)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (5)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (15)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (15)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Февраль 2020  (1) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Схема

Её основой является советская микросхема К157ДА1, двухканальный двухполупериодный выпрямитель среднего значения сигналов. Напряжение питания схемы лежит в широком диапазоне напряжений, от 12 до 16 вольт, т.к. схема содержит стабилизатор на 9 вольт (VR1 на схеме). Если использовать стабилизатор в металлическом корпусе ТО-220, то напряжение можно подавать вплоть до 30 вольт. Подстроечные резисторы R1 и R2 регулируют уровень сигнала на входе микросхемы. Схема не критична к номиналам используемых компонентов. Можно экспериментировать с ёмкостями конденсаторов С9, С10, которые влияют на плавность хода стрелки, а также с резисторами R7 и R8, которые задают время обратного хода стрелки. In L и In R на схеме подключаются к источнику звука, в качестве которого может выступать любое устройство с линейным выходом – будь то компьютер, плеер или телефон. (cкачиваний: 223)

2.2. Индикатор MACD+RSI: самый точный скальпер

Комбинированный индикатор для стабильного скальпинга можно считать одним из наиболее подходящих для любых бинарных опционов. Отлично показывает все виды дивергенций, использование механизма RSI практически убирает традиционное для MACD запаздывание.

Стабильно работает на слабоволатильных активах, показывает практически все значащие трендовые развороты даже на малых периодах (от М1 до М15). Торговым сигналом считается пересечение синей сигнальной линией красной: для опциона CALL необходим пробой внизу вверх, для опциона PUT — пересечение сверху вниз. Рекомендуется для периодов от М5.

Как собрать светодиодный индикатор уровня на LM3915 своими руками

Конструкция микросхемы LM3915 представляет заключенных в корпусе десяти однотипных операционных усилителей компараторов. Прямые входы усилителей подключены через линейку резистивных делителей подобранных так, что светодиоды в нагрузке усилителей включаются по логарифмической зависимости. На обратные входы усилителей поступает входной сигнал , который формируется буферным усилителем (вывод 5). Конструкция микросхемы включает также интегральный стабилизатор (выводы 3, 7, 8), а также ключ задания режима работы индикатора (вывод 9). Микросхема имеет широкий диапазон напряжения питания от 3 до 25 Вольт. Величина опорного напряжения задается в пределах от 1,2 до 12 Вольт внешними резисторами. Шкала индикатора соответствует уровню сигнала 30 дБ с шагом в 3 дБ. Выходной ток устанавливается в пределах от 1 до 30 мА.

Конструкция микросхемы LM3915
Набор деталей «Индикатор уровня звука на LM3915»
Детали набора «Индикатор уровня звука на LM3915»
Плата индикатора уровня звука на LM3915
Плата индикатора уровня звука на LM3915

Схема индикатора звука на LM3915 представлена на фото.

Схема индикатора звука на LM3915

Принцип действия. Напряжение питания 12 Вольт подается на третий вывод LM3915. Оно же, через ограничивающий резистор R2 поступает на светодиоды. Сопротивления R1 и R8 выравнивают яркость свечения красных светодиодов в шкале. Также напряжение 12 Вольт подается на перемычку управления режимом работы индикатора (вывод 9). В замкнутом состоянии перемычки схема обеспечивает свечение только одного светодиода, соответствующего уровня сигнала. При разомкнутой перемычке схема работает в эффектом режиме «столбик», уровень входного сигнала пропорционален высоте светящегося столбца или длине строки. Делитель собранный на R3, R4 и R7 ограничивает уровень входного сигнала. Точная настройка делителя осуществляется многооборотным подстроечным сопротивлением R4.  Делитель R9 R6 задает смещение для верхнего уровня логарифмической линейки сопротивлений микросхемы (вывод 6). Нижний уровень логарифмической линейки сопротивлений (вывод 4) присоединяется к общему проводу. Резистор R5 (вывод 7) увеличивает величину опорного напряжения и влияет на яркость светодиодов. R5 задаёт ток через светодиоды и рассчитывается по формуле: R5=12,5/Iled, где Iled – ток одного светодиода, А. Индикатор уровня звука работает следующим образом. В момент, когда входной сигнал преодолеет порог нижнего уровня плюс сопротивление на прямом входе первого компаратора, засветится первый светодиод (вывод 1). Дальнейшее нарастание звукового сигнала приведёт к поочерёдному срабатыванию компараторов, о чём даст знать соответствующий светодиод. По инструкции во избежание повреждения микросхемы, не следует превышать ограничение в 20 мА тока подаваемого на светодиоды.

Индикатор уровня звукового сигнала

Сейчас стало модным для визуальной индикации уровня сигнала использовать светодиоды и светодиодные матрицы, чему способствовал, в значительной степени, выпуск микросхем типа LM3915.

Но со временем мода проходит, и хочется чего-то оригинального, которого нет у других.

И тут вспоминается старая добрая схема на газоразрядном индикаторе ИН-13, способная создать такой красивый эффект, что любой светодиод побледнеет от зависти! ИН-13 представляет собой индикатор тлеющего разряда в виде стеклянной трубки длиной 130 мм.

   А – анод, Э – экран, К – катод, Кв – вспомогательный катод, А0 – анод нулевой, А1-А4 – группа анодов, Ап – анод последний.

Технические характеристики газоразрядных индикаторов

Существует 2 варианта схем индикатора звука с ИН-13 — простая, с питанием от сети 220 В, и посложнее — с DС-DC преобразователем и операционным усилителем на входе.

Первая схема довольна старая, но довольно простая и может пригодится начинающим радиолюбителям в качестве индикатора выходного сигнала усилителя. Можно использовать её и в качестве линейного вольтметра, немного изменив входную часть. Транзистор можно применить и какой-нибудь современный высоковольтный.

В своём случае решил собрать по более сложной, чтоб не связываться с небезопасным сетевым питанием. При кажущейся сложности, она заработала практически с первого включения.

Вся конструкция, включая повышающий инвертор 12-120 В для питания анодного напряжения, уместилась на одной небольшой плате. Это стало возможным благодаря применению SMD деталей.

Транзисторы MPSA42 должны быть высоковольтные, а не обычные КТ315. Заменимы на любые с напряжением коллектора от 200 В и более.

ОУ ставьте любые аналогичные — TL062, TL082 и так далее.

Настройка индикатора звука

Настройка сводится к установке уровня яркости света, с помощью подстроечного резистора Р5. Он определяет напряжение на аноде 120 В. Элементы Р1-4 нужны для установки нуля шкалы и максимального размаха.

Принцип работы индикаторной отвертки

Вне зависимости от вида прибора, основная идея его заключается в подаче сигнала о наличии напряжения в сети. При этом контактные модели определяют напряжение посредством касания к оголенному проводнику (жиле кабеля, контактным поверхностям приборов, проводящей ток жидкости и так далее), а бесконтактные «считывают» электромагнитное поле участка.

Однако в любом случае электрическую цепь в обычной индикаторной отвертке требуется замкнуть для получения информации – а именно, прижать пальцем контактную пластину на конце изделия. Человек – тоже проводник электроэнергии, на этом и основан принцип работы прибора.

Все изделия делят на группы не только по особенностям конструкции, но и по чувствительности. Самыми точными заслуженно считаются качественные электронные модели, самими малочувствительными – изделия с неоновой лампой. Последний тип инструмента воспринимает напряжение от 60 В.

Типы индикаторов напряжения: однополюсные и двухполюсные устройства

Современная промышленность выпускает большое количество различных индикаторов. Определенной стандартной классификации их не существует. По особенностям технического устройства приборы можно разделить на однополюсные и двухполюсные, а также выделяют пассивные и активные изделия. В разделе речь пойдет о классификации по первому признаку.

Однополюсные индикаторы. К данному виду относятся простейшие устройства, схема конструкции которых описана выше: в основе – жало и неоновая лампа для индикации. Более совершенные однополюсные приборы имеют светодиодную лампу, питание от батареек, звуковой сигнал – дополнительно к свечению лампы. По принципу работы такие индикаторы идентичны простейшим устройствам, но появляется возможность прозвонки проводов.

Наиболее продвинутые однополюсные модели имеют сложное устройство, хотя принцип работы сохраняется. Дополнительно к уже перечисленным функциям у них добавляется способность определения обрыва скрытых проводов, находящихся под слоем штукатурки.

Двухполюсный вид индикаторных отверток отличается тем, что имеет не один, а два корпуса. Каждый выполнен из диэлектрического материала, имеет подсветку – неоновую или светодиодную лампу. Некоторые устройства оснащены звуковым сигналом. Два корпуса соединяются проводом, длина которого обычно не превышает 1 м, оба имеют жало. Такие приборы считаются профессиональными, применяются для проверки присутствия тока между двумя контактами. Среди двухполюсных есть модели, которые определяют не только наличие напряжения, но и его величину.

Двухполюсный вид индикаторных отверток характеризуется наличием двух корпусов

Пассивные индикаторы напряжения и тока: особенности функционирования

Вторым признаком классификации индикаторов является их деление на активные и пассивные устройства. В основу положены функциональные особенности инструментов. К пассивным следует отнести приборы, отличающиеся такими характеристиками:

  1. Несложные. Однополюсные, состоят из одного корпуса с размещенными в нем элементами.
  2. Ограниченный функционал. Единственное, что показывает индикаторная отвертка такого типа, – есть ли напряжение в определенной точке электроцепи.
  3. Непрофессиональный инструмент. Чаще применяется в быту, для электриков неприемлем в силу отсутствия возможностей обеспечить необходимое обследование состояния электропроводящих кабелей.

Преимущество данных индикаторов состоит в том, что при определении наличия напряжения не нужен ноль, его роль выполняет человек, в руках у которого оказывается отвертка-индикатор. Особенность ее устройства заключается еще и в том, что резистор, в силу значительной сопротивляемости, не определяет наличия напряжения ниже 50 вольт.

Понять, как найти фазу индикаторной отверткой подобного типа, труда не представляет. Жалом следует коснуться проводника, а рукой нажать на пластину на корпусе устройства. При наличии напряжения неоновая лампочка засветится.

Пассивные индикаторы напряжения и тока определяют только то, есть ли напряжение в определенной точке электроцепи

Характеристики активных отверток-индикаторов напряжения

Активные индикаторы имеют более сложное устройство. Внутри корпуса находится схема, которая функционирует несколько иначе, чем у пассивных приборов. Такое устройство является более чувствительным. Светодиодный индикатор напряжения реагирует не только на наличие тока, но и на электромагнитное поле, которое обязательно образуется вокруг проводника.

Активные индикаторы имеют следующие технические характеристики:

  1. Наличие собственного источника питания. Внутри корпуса имеется батарейка, которая приводит в активное состояние внутреннее устройство.
  2. Светодиод вместо неоновой лампы.

Как пользоваться индикаторной отверткой со светодиодом? Если одной рукой взяться за жало, а второй коснуться пластины на корпусе, светодиодная лампа отреагирует – засветится. Эта функциональная возможность активно применяется при прозвонке проводов.

Активные индикаторы имеют собственный источник питания

Подробнее о типах индикаторных отверток

Наиболее близкими по конструкции и возможностям являются модели с неоновой лампой и светодиодом. Отличаются они порогом чувствительности (для диода он существенно ниже 60В) и наличием дополнительных возможностей.

В отвертке с неоновой лампой возможностей минимум – она «умеет» только обнаруживать переменный ток в цепи.

Вот так изделие выглядит в разобранном виде. Как видно на фото, элементов питания в этом приборе нет, разряжаться со временем просто нечему. Работать, то есть включать лампочку, эта отвертка будет только при контакте с электрической цепью, в которой имеется напряжение не менее 60В, и телом человека.

Важно: токоограничивающий резистор в схеме предусмотрен именно для того, чтобы снизить силу тока в проверяемой цепи до уровня, безопасного для человека

Модель используется для определения фазы и, методом исключения, нуля.

В более сложных изделиях элементы питания могут присутствовать, в этом случае тестер можно применять и в бесконтактном режиме – детектор будет определять наличие электромагнитного поля, но тоже только при определенном уровне напряжения.

Индикаторная отвертка со светодиодом работает по схожему принципу, только в качестве индикатора выступает диод.

Почти всегда такие изделия снабжены элементами питания, могут работать в контактном и бесконтактном режиме. Часто помимо световой индикации присутствует и звуковая. Этот тип инструмента считается универсальным.

Бесконтактные индикаторные отвертки работают по принципу обнаружения «наводок», то есть ищут электромагнитное поле. Отличить их от контактных вариантов легко – в этих изделиях пластиковый щуп, а не металлический.

Электронные индикаторные отвертки имеют в качестве индикатора цифровой дисплей и, как правило, дополнительный индикатор фазы.

Принцип работы тот же – при касании щупом участка электрической цепи на дисплее появляется сообщение об уровне напряжения. Именно в этом заключается основное отличие электронного прибора от обычного, хотя для точных измерений все же лучше пользоваться тестером или мультиметром.

Настройка индикатора

Когда плата собрана, стрелочная головка подключена, можно приступать к испытаниям. В первую очередь следует, подав питание на плату, проверить напряжение на 11 выводе микросхемы, там должно быть 9 вольт. Если напряжение питания в норме, можно подавать на вход платы сигнал с источника звука. Затем, используя резисторы R1 и R2 на плате и подстроечный резистор у стрелочной головке добиться нужной чувствительности, чтобы стрелка на зашкаливала, а находилась примерно в середине шкалы. На этом основная настройка завершена, стрелка будет плавно двигаться в такт музыке. Если хочется добиться более резкого поведения стрелки, можно установить резисторы сопротивлением 330-500 Ом параллельно стрелочным головкам. Такой индикатор будет отлично смотреться в корпусе самодельного усилителя, либо же как самостоятельное устройство, особенно если подсветить индикатор парой светодиодов. Удачной сборки!