Высоковольтный униполярный генератор

Содержание

Сборка

Пройдемся по компонентам: транзисторы — любые мощные мосфеты, но стоит учитывать, что амплитуда напряжения на стоках превышает питающее в примерно три раза, советую IRFP250-260N. Резисторы два ватта 470-560 ом, стабилитрон 12-18 вольт 1,3 ватта, или супрессор на то же напряжение (у меня супрессор 1,5KE12A). Дроссель мотается проводом не тоньше 0,7мм (у меня 1 мм) на кольце из феррита или порошкового железа (сине-салатовые или желто-белые кольца из компьютерных блоков питания тоже подходят), индуктивность 50-200мкгн, оптимально 100. Диоды быстрые 400+ вольт 1+ампер (я использовал HER308). Конденсаторы пленочные не менее 630 вольт, но нежелательно, греются, суммарная емкость 0,3-1мкф, оптимально 0,6-0,7мкф. Советую использовать пару MKPH 0,3мкф, они вообще не греются. Печатную плату я оставлю внизу в формате PDF.

После запайки всех компонентов переходим к изготовлению трансформатора: на любом советском строчнике мотаем 5+5 витков монтажного провода в одну сторону, вторичкой будет высоковольтная обмотка. Ну а теперь фото красивой дуги, полученной при питании 19 вольт.

Всем спасибо за прочтение! Буду рад, если статья была полезной и интересной!

Ссылка на плату и схему

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:

Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E. Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины). Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором. Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.

Фланец для крепления резонаторов

Генератор ВЧ со сменными резонаторами

Генератор ВЧ со сменными резонаторами

Генератор ВЧ работает даже при напряжении 3,6 вольта, потребляя ток 2,5А

Тыльная сторона ВЧ-генератора

кусочек текстолита — тоже резонатор)))

Фланец для сменного резонатора

Генератор ВЧ на маленьком MOSFET MRF284 со съемными резонаторами

875 МГц. 5Вт. без особых напрягов…

Генератор ВЧ на маленьком MOSFET MRF284 со съемными резонаторами

Семейство генераторов ВЧ на MOSFET транзисторах различной мощности

Отвод энергии резонатора на затвор при помощи конденсатора

Двухтранзисторный ВЧ-мультивибратор

Модулятор для ВЧ-генератора

Эксперименты с двухтранзисторным ВЧ-мультивибратором

Модулятор-мультивибратор-балластное сопротивление

Мощный генератор-мультивибратор на транзисторах PTFA211801

Маленький генератор на MRF284 1300-1500 МГц.

Маленький генератор на MRF284 1300-1500 МГц.

Маленький генератор на MRF284 1300-1500 МГц.

Сэндвич из 3-х транзисторов MRF19125

Экспериментальный генератор ВЧ на 3-х MOSFET транзисторах

Экспериментальный генератор ВЧ на 3-х MOSFET транзисторах

Экспериментальный генератор ВЧ на 3-х MOSFET транзисторах

Экспериментальный генератор ВЧ на 3-х MOSFET транзисторах

Автогенератор — мультивибратор

Коллекторная плата трехтранзисторного генератора

Проверка работы ВЧ-генератора на PTFA211801E. 6,5 В при токе 4,6 А.

ВЧ-генератор с резонатором со вставкой из органического стекла (для фиксации формы резонансных пластин).

Проверка работы ВЧ-генератора.

Плата мощного ВЧ-генератора с вырезом под MOSFET транзистор.

Тыльная сторона ВЧ-генератора: коммутация, предохранитель, конденсаторы и радиатор

Плата ВЧ-генератора, вид со стороны основного монтажа.

ВЧ-мультивибратор + усилитель

ВЧ-мультивибратор + усилитель на MOSFET

Плата генератора 950-1100МГц

Генератор 950-1100МГц (экспериментальный)

Как изменить форму сигнала

Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать

вот эту кнопочку и крутилку

Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов

где

S – скважность

T – период импульса, с

t – длительность импульса, с

Величина D (Duty), обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

На экране осциллографа это может выглядеть вот так

Можем также из треугольного сигнала получить пилообразный сигнал

Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.

Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.

Как вы видите, эта функция без проблем работает в этом генераторе частоты

А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов

Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно

Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Преимущества самодельного генератора

Самодельный генератор выигрывает у покупного более доступной стоимостью. Безусловно финансовая сторона важна, но устройство, сделанное своими руками – это прибор только с необходимыми и заявленными требованиями.

Стоит учесть, что выбранная конструкция непосредственно сказывается на КПД. Так в асинхронных генераторах потери КПД не превышают 5%. Лаконичность конструкции его корпуса с защитой мотора от влаги, грязи снижает потребность в частом техническом обслуживании. Асинхронный генератор более устойчив против скачков напряжения за счет выпрямителя на выходе, что предотвращает поломки подключенного оборудования.

Самодельный генератор работает вне зависимости от удаленности ЛЭП, обеспечивая электроэнергией в любых условиях. Он преобразует энергию, используя доступный вид топлива

Такое устройство эффективно питает сварочные аппараты, лампы накаливания, компьютерную и мобильную технику с чувствительностью к перепадам напряжения. Имеет хорошую производительность и моторесурс.

Прибор – хорошая альтернатива обычным источникам электропитания, выручает при аварийном отключении электричества, экономит средства. Мобилен, малогабаритен, с простой конструкцией, легко поддается ремонту – можно своими силами заменить вышедшие из строя детали, узлы.

Кроме прочего, самоделка обладает небольшими размерами, поэтому с легкостью устанавливается даже в небольших помещениях.

Разместить самодельный генератор можно в небольшом помещении, за счет компактной конструкции прибор не требует много места для своей установки

В зависимости от от используемого типа топлива генератор требует лишь соблюдения мер предосторожности в процессе использования. В процессе эксплуатации самодельного генератора необходимо соблюдать технику безопасности: следить за электрическими кабелями, не допускать их перекручивания, не трогать оголенные провода руками и т.п

В процессе эксплуатации самодельного генератора необходимо соблюдать технику безопасности: следить за электрическими кабелями, не допускать их перекручивания, не трогать оголенные провода руками и т.п

Генераторы смешанного сигнала

В стандартной конструкции имеется многоканальный селектор. На передней панели генератора, вырабатывающего сигнал с минимальной частотой 70 Гц, расположено не меньше пяти выходов. Номиналы используемых в конструкции сопротивлений – 4 Ом, конденсаторов – 20 пФ. Генератор выходит на рабочий режим в течение 2,5 секунды.

Обратная частота прибора может регулироваться в более широком диапазоне – до 2000 кГц. При этом частота регулируется с помощью модуляционного устройства. Погрешность прибора (абсолютная) составляет не больше 2 дБ. Для стандартных генераторов сигналов используются преобразователи серии РР201.

Как выглядят генераторы?

Стандартные генераторы синусоидального сигнала представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.

Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.

Карманный плеер в роли генератора сигналов

Рейтинг:   / 5

Подробности
Категория: Генераторы НЧ
Опубликовано: 17.03.2017 15:26
Просмотров: 2256

А. Бутов, с. Курба, Ярославской обл. Если вам для тестирования и настройки звуковоспроизводящих устройств потребовался генератор испытательных сигналов, то совсем не обязательно собирать сложное электронное устройство. Для этих целей можно воспользоваться карманным Flash плеером, в память которого можно записать сотни и тысячи испытательных сигналов различной формы, а помимо них, и реальные звуковые музыкальные композиции для субъективной оценки качества звучания звуковоспроизводящей аппаратуры. Для использования в таком качестве подойдет любой карманный плеер средней и высокой ценовой категории с напряжением питания не ниже 3 В, имеющий на выходе для подключения стереонаушников хорошее качество звучания.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и C3, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и C3 в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

FC50 — Частотомер встраиваемый от 1 Гц до 50 МГц.

Частотомер собран, настроен, проверен. Готовое решение для Ваших конструкций, экспериментов.

Технические характеристики частотомера FC50:

параметр

минимум норма максимум
Диапазон измеряемых частот 1 Гц. 50 МГц.
Дискретность отсчета частоты от 0 до 50 МГц 1 Гц.
Уровень входного сигнала для входа «B» (от 0 до 50 МГц). 0,6 В. 5 В.
Период обновления показаний 1 раз/сек
Напряжение питания (разъём «+5v») +4,5 В. +5,0 В. +5,5 В.
Напряжение питания (разъём «+8…15v») +8,0 В. +15,0 В.
Стабильность частоты @19,2МГц, при температуре -20С…+80С 2ppm (TCXO)

Габариты печатной платы частотомера FC50: 45мм*46мм. Дисплей цветной TFT LCD с подсветкой (диагональ 1,44″ = 3,65 см). * Верхний предел входного сигнала ограничен мощностью рассеивания защитных диодов 1N4148WS (0,2 Вт*2шт).

Особенности частотомера FC50:

Термокомпенсированный опорный генератор TCXO.
Заводская калибровка.
Дискретность измерения частоты 1 Гц, в диапазоне 1 Гц… 50 МГц. Входной сигнал обрабатывается высокоскоростным компаратором (MAX999EUK).
Цветной TFT дисплей с экономичной подсветкой.
Мы не используем электролитические конденсаторы. Вместо электролитических конденсаторов, мы применяем современные высококачественные SMD керамические конденсаторы значительных емкостей.
Конструктив встраиваемого прибора. Частотомер оптимизирован для встраивания в плоскую переднюю панель любого корпуса. В комплекте поставляются нейлоновые изолирующие стойки М3*8мм., для обеспечения зазора между передней панелью и печатной платой частотомера.
Мы не используем технологии запрограммированного старения, широко распространившиеся в современной технике.
Частотомер FC50 разработан изготавливается в России. Собственное автоматизированное мелкосерийное производство.
Высокое качество.

Принципиальная схема частотомера FC50:

Краткое описание частотомера FC50:

Измеряемый сигнал с входа X1, через RC цепочку R1C1 подаётся на инвертирующий вход высокоскоростного компаратора U1 (MAX999). Исходно, компаратор MAX999 имеет встроенный аппаратный гистерезис 3,5 мВ, недостаточный для стабильной работы этого узла. Поэтому, резистором R6 значение гистерезиса увеличено до 100…200 мВ, что обеспечивает оптимальную стабильность входного формирователя. Подстроечным резистором R2 осуществляется подстройка порога срабатывания компаратора для обеспечения максимальной чувствительности входа. Сформированный компаратором сигнал поступает на вход таймера/счётчика микроконтроллера U2.

В качестве опорного генератора, используется VC-TCXO (управляемый напряжением термо-компенсированный опорный генератор), обеспечивающий высокую стабильность опорной частоты (+/-2ppm или лучше), без применения дополнительных мер по термостабилизации. Транзистор VT1 усиливает амплитуду сигнала с опорного генератора (0,4 vpp) до уровня, необходимого для работы микроконтроллера U2. При необходимости, частотомер можно откалибровать самостоятельно, подключив ко входу эталон частоты и вращая движок резистора R9 «калибровка».

Резистор R7 устанавливает яркость свечения подсветки LCD-TFT дисплея, с расчётом, чтобы прямой ток не превышал 20 мА.

Узел питания частотомера FC50 состоит из двух ступеней линейных стабилизаторов. Входное напряжение +8…+15 В, через диод VD3 защиты от переполюсовки напряжения питания, подаётся на вход первого линейного стабилизатора напряжения U3, понижающего напряжение питания до безопасного уровня +5 В. Далее, напряжение +5 В, подаётся на вход прецизионного стабилизатора U4, понижающего напряжение до уровня +3,3 В. Все узлы частотомера (исключая светодиод подсветки дисплея LCD-TFT), питаются от напряжения +3,3 В. При необходимости, частотомер может питаться от напряжения +5 В, подаваемого в обход стабилизатора U3, непосредственно на вход X3. В этом случае, защита от переполюсовки питания осуществляется диодом VD4 и плавкой перемычкой «FUSE». При постоянном питании устройства от напряжения +5 В, через контакты X3, ток потребления частотомера можно несколько снизить, разрезав перемычку J1, и тем самым отключив выход стабилизатора U3.

Самодельные станции

Также многие умельцы создают самодельные станции (обычно на основе газогенератора), которые после продают.

Все это указывает на то, что можно и самостоятельно изготовить электростанцию из подручных средств и использовать ее для своих целей.

Далее рассмотрим, как можно сделать устройство самостоятельно.

На основе термоэлектрогенератора.

Первый вариант – электростанция на основе пластины Пельтье. Сразу отметим, что изготовленное в домашних условиях устройство подойдет разве что для зарядки телефона, фонаря или для освещения с использованием светодиодных ламп.

Для изготовления потребуется:

  • Металлический корпус, который будет играть роль печи;
  • Пластина Пельтье (отдельно приобретается);
  • Регулятор напряжения с установленным USB-выходом;
  • Теплообменник или просто вентилятор для обеспечения охлаждения (можно взять компьютерный кулер).

Изготовление электростанции — очень простое:

  1. Изготавливаем печь. Берем металлический короб (к примеру, корпус от компьютера), разворачиваем так, чтобы печь не имела дна. В стенках внизу проделываем отверстия для подачи воздуха. Вверху можно установить решетку, на которую можно установить чайник и т. д.
  2. На заднюю стенку монтируем пластину;
  3. Сверху на пластину монтируем кулер;
  4. К выводам от пластины подключаем регулятор напряжения, от которого и запитываем кулер, а также делаем выводы для подключения потребителей.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  GSM сигнализация – охрана дома, дачи, гаража под вашим контролем

Работает все просто: разжигаем дрова, по мере нагрева пластины на ее выводах начнется генерация электроэнергии, которая будет подаваться на регулятор напряжения. От него же начнет и работать кулер, обеспечивая охлаждение пластины.

Остается только подключить потребители и следить за процессом горения в печке (подкидывать своевременно дрова).

На основе газогенератора.

Второй способ сделать электростанцию – это изготовить газогенератор. Такое устройство значительно сложнее в изготовлении, но и выход электроэнергии – значительно больше.

Для его изготовления потребуется:

  • Цилиндрическая емкость (к примеру, разобранный газовый баллон). Она будет играть роль печки, поэтому следует предусмотреть люки для загрузки топлива и очистки твердых продуктов горения, а также подвод воздуха (потребуется вентилятор для принудительной подачи, чтобы обеспечить более лучший процесс горения) и вывод для газа;
  • Радиатор охлаждения (может быть изготовлен в виде змеевика), в котором газ будет охлаждаться;
  • Емкость для создания фильтра типа «Циклон»;
  • Емкость для создания фильтра тонкой очистки газа;
  • Бензиновая генераторная установка (но можно просто взять любой бензиновый мотор, а также обычный асинхронный электродвигатель 220 В).

После этого все необходимо соединить в единую конструкцию. От котла газ должен поступать на радиатор охлаждения, а после на «Циклон» и фильтр тонкой очистки. И только после этого полученный газ подается на двигатель.

Это указана принципиальная схема изготовления газогенератора. Исполнение же может быть самым разным.

К примеру, возможна установка механизма принудительной подачи твердого топлива из бункера, который, кстати, тоже будет запитываться от генератора, а также всевозможных контролирующих устройств.

Создавая электростанцию на основе эффекта Пельтье, особых проблем не возникнет, поскольку схема простая. Единственное, следует принимать некоторые меры безопасности, поскольку огонь в такой печке практически открытый.

А вот создавая газогенератор, следует учитывать множество нюансов, среди них — обеспечение герметичности на всех соединениях системы, по которой проходит газ.

Чтобы двигатель внутреннего сгорания нормально работал, следует побеспокоиться о качественной очистке газа (наличие примесей в нем недопустимо).

Газогенератор – конструкция громоздкая, поэтому для него необходимо правильно подобрать место, а также обеспечить нормальную вентиляцию, если он будет установлен в помещении.

Поскольку такие электростанции не новь, и любителями они изготавливаются уже сравнительно давно, то и отзывов о них накопилось немало.

В основном, все они положительные. Даже у самодельной печи с элементом Пельтье отмечается, что она полностью справляется с поставленной задачей. А что касается газогенераторов, то здесь наглядным примером может выступить установка таких устройств даже на современных авто, что говорит об их эффективности.

Высоко функциональный генератор частот на шесть диапазонов своими руками

Генератор частот — некоторое время назад я в домашних условиях собрал для себя цифровой осциллограф, а вот приличного генератора у меня не было. В связи с этим, пришлось выбирать один из двух вариантов — приобрести в магазине новый либо собрать, так же как и осциллограф, собственноручно. Перекопал большое количество принципиальных схем, в большинстве случаев смотрел проекты на чипах: XR2206, MAX038, ICL8038.

Но это меня не очень вдохновляло, требовался генератор частот с более широким функционалом. Однако, почти все раннее просмотренные мной проекты, нельзя было назвать плохими. Но, тем не менее, нашел в сети интернет, на зарубежном сайте, давно уже опубликованную, незатейливую схему функционального генератора частот. Прибор представлял собой электронное устройство выполненное на двух спаренных операционных усилителях и некоторых компонентов обвязки.

Принципиальная схема многофункционального генератора частот

Представленный здесь прибор в состоянии генерировать сигналы с частотой от 0,2 Гц до 20 кГц. В дальнейшем предполагается увеличить диапазон частот до 50000 Гц, для этого потребуются фирменные операционные усилители последних разработок. В генераторе заложена функция переключения частот по шести диапазонам, при этом имеется возможность плавной подстройки частоты. Генератор частоты позволяет генерировать звуковую волну синусоидальной, прямоугольной, пилообразной или треугольной формы.

Коэффициент заполнения импульсного сигнала может находится постоянном значении 50% либо плавно настраиваться в пределах 5-95%. Помимо этого, в выходной цепи генератора есть возможность сконфигурировать значение постоянной составляющей сигнала, тем самым способствуя генерированию положительных и отрицательных импульсов. Размах выходной амплитуды располагается в границах от 0v до 5v для прямоугольной и треугольной формы и от 0v до 3,5v для синусоидального сигнала. Вместе с тем, делитель x0.1 установлен в выходном тракте генератора частот.

Генератор частот — печатная плата

Печатная плата генератора была установлена в легкий и прочный корпус из пластика. Передняя панель корпуса была изготовлена путем печати на высококачественной мелованной бумаге, затем закрепленная на двухсторонней ленте, а поверхность сверху покрыта самоклеящейся пленкой. Трансформатор с выходным напряжением 2×12v, имеет добавочную обмотку с напряжением 3,5v, для подачи питания на светодиод, расположенный на лицевой панели.

В итоге мои затраты на сборку генератора частот составили небольшую сумму, в пределах 980 рублей. В основном деньги ушли на приобретение переключателя на шесть позиций, пластиковый корпус, ручки для потенциометров и коннекторы BNC.

Отличительной особенностью этого многофункционального устройства является легкость в эксплуатации и малая стоимость комплектующих. К тому же, прибор обладает очень низким коэффициентом искажений — 0,6%.

Заключение

Есть и некоторые недостатки, к ним можно отнести маленький диапазон частот, который способен генерировать прибор и немного технологически сложный монтаж (если сравнивать со специально предназначенными для этого микросхемами).

Размах амплитуды постоянен во всех границах частот. Общее сопротивление генератора на выходе имеет 590 Ом, благодаря этому, частотный генератор способен справляться практически с любой нагрузкой — от условного «0» до бесконечности. Это стандартное значение для многих приборов такого направления. В схеме, на данный момент установлены недорогие операционные усилители ОУ TL072, характеристики OPA2604 намного лучше, а если использовать AD817 — то вообще будет супер.

Предыдущая запись Игровые видеокарты для пк — семь лучших графических плат 2019 года

Следующая запись Цифровой ЦАП MOON 680D — преобразователь с сетевым стримером

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя  мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор. Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим,  генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы.

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор. Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора, сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

  Даташит ICL8038 (151.5 KiB, 6,801 hits)

  Даташит КР140УД608 (130.7 KiB, 3,974 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10. Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем

Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм

Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту

Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ  (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат – SPRINT LAYOUT.

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом  ЛУТ.

Страницы: 1

Самодельные приборы

Можно сделать генератор сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.

В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона

И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным

Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.