Как правильно зарядить АКБ самодельной зарядкой?
Чтобы не допустить быстрого выхода из строя АКБ, надо учитывать определенные нюансы по правильной подзарядке.
Сначала отключите клеммы батареи от зажимов. Открутите болты, которые крепят фиксирующую планку аккумулятора.
Демонтируйте устройство из посадочного места, отнесите домой или в гараж.
Прочистите корпус от загрязнений
Обратите внимание на сами клеммы. Если на них есть окисления, их следует очистить
Используйте зубную или строительную щетку, подойдет наждачная бумага мелкой зернистости. Главное — не счистить рабочий налет.
Если аккумулятор обслуживаемый, откройте все его банки и проверьте в них уровень электролита. Рабочий раствор должен покрывать все секции. Если это не так, то заряд батареи может привести к быстрому испарению кипящей жидкости, что отразится на функциональности батареи и ее исправности в целом. При необходимости добавьте в банки дистиллированную воду. Визуально осмотрите корпус батареи на предмет дефектов, иногда утечка жидкости связана с наличием трещин. Если повреждения серьезные, то АКБ подлежит замене.
Подключите зажимы самодельного ЗУ к клеммам АКБ, соблюдая полярность. После этого девайс можно подключать к бытовой сети. Пробки на банках при этом откручивать не надо.
Когда процедура заряда будет завершена, проверьте уровень электролита и если все нормально, то закрутите банки. Установите батарею в автомобиль и убедитесь, что она в рабочем состоянии.
Зарядное устройство из компьютерного блока питания
Понадобилась зарядка для аккумулятора автомобиля. Перебрав несколько вариантов, остановился на переделке блока питания компьютера. Переделывать решил по-простому. Зарядное не будет иметь регулировок, нет у меня такой задачи. В принципе можно все сделать за пару часов.
— блок питания АТХ;— провода;— зажимы типа «крокодил»;— сетевой выключатель;— фольгированный стеклотекстолит;— пластик plexiglas;— радиокомпоненты;— инструменты.
Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.
Данный блок питания имеет на борту малоизвестную микросхему 2003. По данной микросхеме мало информации. Вроде как это ШИМ контроллер с мультивизором. Будем разбираться по схеме, о схеме далее.
Подключаться к аккумулятору буду при помощи проводов с «крокодилами». У меня уже были распаянные.
В роли сетевого выключателя у меня тумблер ТВ2-1. Выдернул со старого телевизора.
Схема блока питания довольно простая. Блок у нас на 300 Ватт, схема на 250 Ватт. Схема может отличаться номиналами некоторых компонентов.
Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.
Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.
Выпаиваем лишние компоненты. На схеме все разборчиво. Получается плата вот такая. Временно выпаял силовые диоды. Так же выпаял дроссель групповой стабилизации, его буду перематывать. Коричневой перемычкой замкнуты пятачки от земли и PS-ON, необходимо для запуска.
Нас интересует линия +12 вольт. Ставим на место силовой диод, я взял диод с линии 5 вольт. Диод установил без прокладки. Ножки крепления радиатора не связаны со схемой, что исключает замыкание. Установил дополнительный дроссель, на его месте стояла перемычка. Со старого дросселя групповой стабилизации смотал все обмотки, оставил старую обмотку на 12 вольт. Установил электролитический конденсатор на 1000 мкф, напряжением 35 вольт.
Переменный резистор вынес на проводах за пределы платы.
Теперь нужно изготовить плату — обманку для нашей микросхемы 2003. Обманка состоит из трех стабилизаторов на» 3.3; 5; 12 вольт. Распаял по простой схеме. Два верхних отрезка собраны на TL431, нижний на LM317.
Верхние два отрезка схемы подключаются к нижнему отрезку на 12 В. Платку, сделал по технологии «процарапывания». Делается за минут 30.
На схеме были указаны точки для подключения платы «обманки». Распаиваем согласно со схемой. На схеме отмечено зелеными точками соответственно. Плата «обманка» имеет цвета согласно напряжениям. Получилось что-то подобное.
Переменным резистором устанавливаем на выходе нужное напряжение (забыл сфотографировать). Оставляю стоп кадр. Измеряю, сопротивление резистора получилось около 11.7 кОм. Собираю из двух резисторов на 10 и 1.8 кОм. Напряжение чуть изменилось, но не значительно.
Плату «обманку» прикрутил к радиатору, через втулку и винт М3. Так же на фото слева видно, что я установил обратно нагрузочный резистор R53.
Подключил провода с зажимами «крокодилами». Установил светодиод для индикации включения. Все закрепил термо клеем. Сетевой провод пустил в разрыв через тумблер.
Первоначально не думал ставить пластину на переднюю панель, но прикрутил. Так выглядит приличней. Такое вот гаражное зарядное устройство получилось. Единственное чего нет в данном устройстве, это защиты от КЗ и переполюсовки. Позже возможно добавлю.
Подробная сборка отображена на видео:
https://youtube.com/watch?v=8GifDPQwpSM
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
http://diodnik.com/zaryadnoe-ustrojstvo-iz-bloka-pitaniya-kompyutera/http://sdelaitak24.ru/%D0%B7%D0%B0%D1%80%D1%8F%D0%B4%D0%BD%D0%BE%D0%B5-%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE-%D0%B8%D0%B7-%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%BE%D0%B3/http://usamodelkina.ru/14262-zarjadnoe-ustrojstvo-iz-kompjuternogo-bloka-pitanija.html
Возможные доработки
На достигнутом многие автолюбители не останавливаются и пытаются усовершенствовать конструкцию зарядного устройства, собранного на базе обычного блока питания для персональных компьютеров.
Если комп старый и не используется, а его блок питания вполне ещё работоспособный, его можно смело задействовать в собственных экспериментах, в попытках воссоздать зарядное устройство.
Среди усовершенствований можно выделить довольно простую, но полезную доработку. Заключается она в том, чтобы к полученному блоку подключить цифровой тип вольтметра. Преимущество такой модернизации в возможности следить и контролировать течение зарядного процесса. Тем самым удастся вовремя отключить и прекратить подачу заряда на аккумуляторную батарею.
Ещё одна простая, но полезная доработка заключается в установке ручки на корпус блока. Тем самым будет намного удобнее переносить устройство.
Некоторые монтируют в корпус, вырезая отверстие соответствующего размера, цифровой измерительный прибор. На него будут выводиться все цифровые данные, сообщающие о работе блока питания, переделанного в зарядное устройство для аккумуляторных автомобильных батарей.
У зарядного устройства в приведённом примере есть функция защиты от возможной перегрузки и возникающего короткого замыкания. Но защиты от потенциально опасной переполюсовки не предусмотрено.
https://youtube.com/watch?v=_ZyTSXde4XA
Потому подключать к ЗУ аккумулятор, нарушая полярность (минус на плюс, плюс на минус), нельзя ни в коем случае. Иначе зарядное устройство моментально выйдет из строя. И все потраченные силы, время и старания окажутся напрасными.
Наглядно видно, что даже старенький блок питания от персонального компьютера может стать превосходной основой для создания зарядного устройства, пригодного для обслуживания автомобильного аккумулятора.
Но без определённых навыков и умений добиться желаемого результата не получится. Здесь нужно разбираться в электронике и электрике, уметь обращаться с электрическими схемами, правильно их читать, находить требуемые компоненты и пр. Потому обычный новичок, который впервые знакомится с устройством ЗУ и БП, такую работу не осилит. Это может показаться простой и легко выполнимой задачей. На практике у многих ничего не получается, либо работоспособность зарядного устройства оказывается далёкой от ожидаемых результатов.
Потому порой самым правильным решением станет покупка современного, функционального и простого в применении заводского зарядного устройства от проверенного и хорошо себя зарекомендовавшего производителя.
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
Как сделать зарядку для АКБ из блока питания компьютера?
При сборке зарядного блока соблюдают требования, делающие прибор пригодным для восстановления работы аккумулятора. Выходное напряжение не должно превышать 14,4 В. В противном случае источник питания быстро выйдет из строя.
Необходимые материалы и инструменты
Для сборки устройств различной мощности используют такие материалы и инструменты:
- Зажимы. Используются для подсоединения питающих кабелей к клеммам батареи.
- Резисторы R43. Рекомендуется приобрести детали номиналом 2,7 и 10 кОм.
- Отвертки. Потребуются крестовая и плоская насадки.
- Конденсаторы. Необходимый номинал – 25 В.
- Диоды 1N4007.
- Светодиодная лампочка. Рекомендуется выбирать элемент зеленого цвета.
- Силиконовый герметик.
- Мультиметр.
- Медные кабели. Потребуется 2 провода длиной 1 м.
Блок питания компьютера должен иметь такие параметры:
- выходное напряжение – 12В;
- номинальное входное напряжение 110/220 В;
- потребляемая мощность – 230 В;
- максимальная сила тока – 8 А.
Пошаговая инструкция
Зарядное устройство.
Компьютер питается от блока с напряжением 220 В, этот параметр для зарядного устройства должен составлять не более 14,4 В. Главная задача – снижение рабочего показателя.
Для этого используется резистор, обеспечивающий регулировку выходного напряжения во всех режимах. Процесс сборки зарядки своими руками включает такие этапы:
- Подготовка компьютерного блока. Деталь освобождают от лишних элементов, после чего отключают все кабели. Контакты разъединяют путем нагревания. Необходимо снять переключатель напряжения. Это позволяет избежать перегорания устройства. Удаляют оба кабеля, подведенных к конденсатору в цепи. На микросхеме находится 4 провода желтого цвета. Их демонтировать не нужно. Оставляют и 4 черных кабеля, а также 1 зеленый.
- Осмотр микросхемы. Провод желтого цвета подключается к конденсаторам на 12 В. Этого параметра недостаточно для зарядки автомобильной АКБ, поэтому детали заменяют элементами номиналом 25 В.
- Обеспечение автоматического включения блока. Если устройство встроено в компьютер, оно активируется при замыкании некоторых контактов. Необходимо снять средство защиты от перепадов напряжения. Защита принимает повышение параметра до 14,4 В за скачок, в результате чего зарядка перестает функционировать. Схема снабжена 3 оптронами, обеспечивающими связь между передатчиками входного и выходного напряжения. Деактивируют элементы путем замыкания контактов.
- Получение нужного значения напряжения. Для этого устанавливают плату TL431. Компонент настраивает напряжение, поступающее по всем каналам устройства. Для повышения рабочего параметра используют резистор. Однако он дает недостаточное напряжение. Встроенный резистор заменяют новым, имеющим сопротивление менее 2,7 кОм.
- Удаление транзистора. Элемент, расположенный рядом с платой TL431, может препятствовать нормальной работе зарядного блока. Его нужно снять.
- Стабилизация выходного напряжения. Необходимо улучшить параметры канала, пропускающего ток 12 В. Использовать вспомогательные схемы с напряжением 5 В нельзя. Требуемую нагрузку обеспечивает резистор с сопротивлением 200 Ом. Дополнительный канал снабжается элементом номиналом 68 Ом. После монтажа резисторов можно отрегулировать напряжение.
- Ограничение силы выходного тока. Этот параметр на выходе блока не должен превышать 8 А. Для получения нужного значения повышают сопротивление резистора, включенного в электрическую цепь обмотки трансформатора. Деталь заменяют элементом большего номинала. Старый резистор выпаивают, после чего фиксируют новый. После выполнения этого действия сила тока не будет повышаться даже при замыкании.
- Установка дополнительной схемы. Плата не входит в комплект блока, поэтому ее делают своими руками. Для этого потребуется реле с 4 клеммами на 12 В. Схему снабжают диодом, отражающим процесс зарядки. Если лампочка горит, зарядное устройство подключено к аккумуляторной батарее правильно.
- Обеспечение защиты от перепадов напряжения. 2 диода соединяются параллельно. Реле закрепляют на вентиляторе компьютерного блока силиконовым герметиком. При отсутствии такого средства используют болты.
- Подсоединение проводов с зажимами. Рекомендуется использовать разноцветные кабели, что позволяет соблюдать полярность. К зарядному блоку провода прикрепляют нейлоновыми стяжками, которые пропускают через просверленные заранее отверстия. Для измерения силы тока заряда устройство снабжают амперметром. К электрической цепи прибор подключается параллельным способом.
- Проверка работоспособности зарядного устройства.
Самодельная зарядка для АКБ
Существует много схем автомобильных зарядных устройств. Для реализации большинства подойдут детали, трансформаторы, выпаянные из старой радиоаппаратуры, блоки питания компьютеров.
Простое устройство на 6 и 12 вольт
Устройство подойдет для зарядки аккумуляторов напряжением 6 и 12 В, емкостью 10-120 А∙ч. Наладка после сборки не требуется, прибор сразу готов к работе.
Основные детали:
- Понижающий трансформатор Т1: от старого лампового телевизора или самодельный. Требуется мощность 300 Вт, ток 10-15 А, на выходе не менее 15 В.
- Выпрямитель из 4 диодов VD2-VD5, которые выдерживают ток от 10 А, обратное напряжение не менее 40 В. Такие характеристики у полупроводников типа Д2124, Д242, Д305. Их устанавливают через изоляторы на радиатор площадью 300 см² и более.
- Конденсаторы С1-С4 бумажные, рассчитанные не меньше, чем на 300 В. Такие используются в бытовой технике, имеют форму кубика.
- Переключатели S2-S5 для регулировки тока.
- Вольтметр PU1 на 30 В, амперметр PA1 на 30 А.
Величина зарядного тока устанавливается с помощью переключателей S2-S5. Через них в первичную обмотку трансформатора подключают конденсаторы С1-С4, гасящие колебания напряжения. Различными комбинациями включения тумблеров регулируют зарядный ток от 1 до 15 А с шагом 1 А. Например, чтобы установить 5 А, задействуют второй и четвертый переключатели. Комбинация S2 и S5 дает 10 А.
Зарядка с плавной регулировкой тока
Схема немного сложнее, но все детали доступны. Прибором заряжают 12-вольтовые АКБ, емкость которых — до 120 А∙ч. Вид зарядного тока — импульсный, используется тиристор. Регулятором плавно изменяют величину зарядного тока, но одновременно предусмотрен ступенчатый переключатель. Контролируют режим при помощи стрелочного амперметра на 30 А.
Самодельный резистор R1 нужен для ограничения тока. Для его изготовления подойдет медный или нихромовый провод диаметром 0,8 мм. Нужна будет небольшая индикаторная лампа Е1, рассчитанная на 24-36 В.
Выходное напряжение на понижающем трансформаторе 16-18 В, ток — 15 А. Ищут прибор с такими характеристиками или делают своими руками из подходящего устройства мощностью 300 Вт. Оставляют только первичную обмотку, вторичную из 42 витков наматывают проводом с изоляцией, сечение 6 мм².
Для схемы нужен тиристор КУ202 с буквенным индексом В-Н. Для охлаждения используют радиатор, площадь рассеивания которого от 200 см². А также понадобится диод VD1 любого типа с характеристиками обратного напряжения 20 В, тока — 200 мА.
Настраивают устройство калибровкой амперметра, подключив в качестве контрольного заведомо исправный. Для нагрузки вместо АКБ подключают автомобильные лампочки, общая мощность которых составляет 250 Вт.
Зарядка из компьютерного блока питания
Из старого блока питания ПК с контроллером TL 494 получается зарядное устройство с хорошими характеристиками. У него регулируемое напряжение и возможность подстройки тока до 10 А.
В демонтированный из компьютера БП вносят согласно схеме некоторые изменения:
- На шинах питания откусывают все провода, оставив только желтые и черные.
- Проводники одного цвета соединяют между собой. Жгут из черных — это минусовый контакт ЗУ, из желтых — плюсовой.
- Печатные дорожки к ножкам 1, 14, 15, 16 микросхемы перерезают.
- Для регулировки напряжения устанавливают переменный резистор 10 кОм, зарядного тока — 4,4 кОм.
Собирают способом навесного монтажа, используют провода с минимальным сечением 4 мм². Устанавливают вольтметр, амперметр, подключают провода с зажимами.
Расположенный внизу схемы резистор на 0,1 Ом мощностью 10 Вт и больше делают из меди или нихрома: подбирают нужную длину провода, замеряя сопротивление. Подойдут также резисторы С5-16МВ или 2 подключенных параллельно 5WR2J. Остальные — любого типа.
…спустя год…
Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить.
При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.
Странно, но оно работает. А вообще-то не должно. Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в каком-то нет. И вообще это смещение маловато для стабильной работы.Поэтому я промакетировал подобную ОС на “спицах” и вот что получилось.
Для удобства макетирования я выбрал компаратор LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот теперь всё красиво. Компаратор срабатывает на 6,1 Ампера. Красный луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор 0,15 Ом сделать легче и греться будет меньше, чем 0,3.Тогда схема чуток меняется.
Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 – 200 градусов и в перчатках аккуратненько расшатываю.
Процесс переделки
Прежде чем приступать к перечню определенных переделок БМ компьютера, нужно иметь в виду, что в его первичных цепях находится довольно опасное напряжение, которое может нанести вред здоровью человека.
Поэтому, нужно внимательным образом отнестись к элементарным нормам техники безопасности в работе с данным устройством.
Итак, можно приступать к работе. Берем имеющийся у вас блок питания необходимой мощности (в нашем случае мы рассматривает модель PSC200, мощность которого составляет 200 Вт). Опишем поэтапно весь алгоритм действий:
- Сначала нужно снять крышку с блока питания компьютера, открутив несколько болтов. Далее нужно найти сердечник импульсного трансформатора.
- Далее нужно измерить этот сердечник, а полученное значение умножить на два. Данное значение индивидуально, на примере рассматриваемого устройства получилось значение 0,94 см2. На практике известно, что 1 см2 сердечника способен рассеять порядка 100 Вт мощности, т.е. наш блок вполне подходит (из расчета — 14 В * 5 А = 60 Вт необходимо для зарядки АКБ).
- В блоках питания используется довольно стандартная микросхема TL494, характерная для многих моделей.
Нам нужны только элементы цепи +12 В. Поэтому все остальное нужно просто выпаять. Для удобства приведены две схемы — на одном общий вид микросхемы, а на втором красным цветом выделены цепи, которые необходимо выпаять:
Иными словами, нас не интересуют цепи -5, +5, -12 В, а также схема сигнала запуска (Power Good) и переключатель напряжения 110/220 В. Чтобы было еще нагляднее, выделим интересующий нас кусок:
R43 и R44 являются резисторами опорного типа. Величину R43 можно корректировать, что позволяет добиться изменения величины выходного напряжения на цепи +12 В. Данный резистор нужно заменить на постоянный резистор R431 и переменный R432. Выходное напряжение можно корректировать в пределах 10-14,3 В, можно корректировать силу тока, проходящего через аккумуляторную батарею.
Дополнительно предлагаем посмотреть переделку ATX блока питания в зарядное устройство
https://youtube.com/watch?v=ncKC8sq3ne4
Также был заменен конденсатор, находящийся на выходе выпрямителя цепи +12 В. На его место был установлен конденсатор с более высоким показателем напряжения (в нашем случае использовался C9).
Резистор, находящийся рядом с вентилятором обдува, необходимо заменить на аналогичный, но обладающий чуть большим сопротивлением.
Сам вентилятор нужно расположить таким образом, чтобы воздух от него поступал внутрь БП, а не наружу, как это было ранее. Для этого, разворачиваем его на 180 градусов.
Также необходимо удалить дорожки, которые соединяют отверстия крепления платы к шасси и цепи массы.
Стоит отметить, что получившееся зарядное устройство из блока питания нужно включать в сеть переменного тока через обыкновенную лампу накаливания мощностью от 40 до 100 Вт.
Это нужно делать на этапе сборки и проверки работоспособности, потом необходимость в этом отпадает. Нужно это для того, чтобы в нашем БП ничего не перегорело от скачков напряжения.
Осуществляя подбор номиналов R431 и R432, необходимо отслеживать напряжение в цепи Uпит — оно не должно превышать 35 В. Оптимальными показателями, в нашем случае, будет выходное напряжение в 14,3 В при незначительном сопротивлении резистора R432.
Еще один вариант переделки
https://youtube.com/watch?v=9EQwPHjzVsg
Виды зарядных устройств для автомобильных аккумуляторов
В процессе заряда батареи происходит восстановление израсходованной в емкости энергии. С этой целью на клеммы аккумуляторной емкости происходит подача напряжения, которая слегка выше, нежели основные рабочие показатели аккумуляторной батареи. В зависимости от вида зарядного устройства, подаваться может:
Постоянный ток. Средняя длительность такого заряда составляет около 10 часов и более, при этом на протяжении всего времени происходит подача фиксированного тока. Напряжение может изменяться в пределах от 13,8 до 14,4 В в самом начале зарядки, а в конце она может снизиться до отметки в 12,8 В. То есть это постепенный метод накопления емкости батареи, который в ходе эксплуатации держится дольше
Но среди минусов можно выделить необходимость в контроле над процессом, так как важно вовремя выключить ЗУ. В случае перезаряда возможно закипание электролита, что снизит функциональность батареи.
Постоянное напряжение. При таком типе заряда устройство все время подает напряжение в 14,4 В, при этом происходит изменение значений от больших в начале зарядки, до меньших – в конце
Поэтому перезаряд невозможен, разве что в случае если вы оставите ЗУ на несколько дней. Достоинством является меньшее время для заряда (7-8 часов), и возможность оставить ЗУ без присмотра. Но при частом использовании данного метода возможно более быстрое выхождение батареи из строя, в процессе эксплуатации она будет быстрее разряжаться.
При таком типе заряда устройство все время подает напряжение в 14,4 В, при этом происходит изменение значений от больших в начале зарядки, до меньших – в конце. Поэтому перезаряд невозможен, разве что в случае если вы оставите ЗУ на несколько дней. Достоинством является меньшее время для заряда (7-8 часов), и возможность оставить ЗУ без присмотра. Но при частом использовании данного метода возможно более быстрое выхождение батареи из строя, в процессе эксплуатации она будет быстрее разряжаться.
Поэтому, если нет необходимости в быстром заряде батареи, лучше отдать предпочтение первому варианту – с постоянным током. А в случае, когда нужно быстро восстановить работоспособность АБ подойдет постоянное напряжение, но не для многоразового пользования.
https://youtube.com/watch?v=a42DqbWE6bI
Если же задаетесь вопросом, какое лучше зарядное устройство сделать своими руками, то здесь однозначно стоит выбрать вариант с подачей постоянного тока. По схеме этот прибор достаточно прост, и состоит из доступных элементов.
Заключение
Основным преимуществом описанного выше способа считается то, что автомобильная АКБ никогда не будет перезаряжаться и, соответственно, это не повлияет на ее ресурс эксплуатации
При этом неважно, сколько времени батарея проведет во включенном состоянии с ЗУ. Из минусов следует выделить то, что данное ЗУ не подразумевает использование индикаторов, которые позволят определить степень зарядки и, соответственно, необходимость отключения прибора
Так что фактически вы не будете точно знать, зарядилась ли ваша батарея или нет. Но в среднем, как отмечают наши соотечественники, уже воспользовавшиеся таким ЗУ, время заряда составляет около суток. Помните о том, что при подключении всегда нужно соблюдать полярность, если вы перепутаете плюс с минусом, то ЗУ просто перегорит.