Управляемый резистор

Содержание

Кодовая маркировка резисторов.

Помимо цветовой маркировки используется так называемая кодовая. Для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

История открытия

Существование электричества было обнаружено ещё в VII веке до н. э. греческими философами, но сам термин «электричество» появился только в 1600 году. Учёный Уильям Гилберт, проводя эксперименты с янтарём, обнаружил его способность притягивать другие вещества (электростатический заряд). Это явление получило название «янтарность». А уже через 60 лет Отто фон Герике создал конструкцию с шаром, надетым на металлический стержень, и фактически изготовил первую электростатическую машину.

В течение следующих лет учёные, экспериментаторы и инженеры открывали всё новые и новые свойства электричества, изучая его природу возникновения. Так, в 1800 году итальянец Алессандро Вольта изобрёл источник тока. Через 20 лет датчанин Кристиан Эрстед открыл электромагнитное взаимодействие, а Андре-Мари Ампер установил связь между электричеством и магнетизмом.

Продолжая исследования Джоуля, Ленца, Фарадея, Гаусса, Ома и Майкла Фарадея, будущий лауреат Нобелевской премии Джозеф Томсон охарактеризовал понятие электричества, введя термин «электрон». Таким образом было установлено, что электричество — это способность физических тел создавать вокруг себя поле, воздействующее на предметы. В каждом теле существуют элементарные частички, которые могут быть как свободными, хаотично перемещающимися, так и привязанными к атомам.

Если же к материалу, имеющему свободные электроны, поднести электромагнитное поле, то движение частичек становится направленным, и возникает электрический ток. Чтобы заряд переместился из одной точки в другую, необходимо затратить работу, которая называется напряжением. При перемещении частички сталкиваются с различными неоднородностями кристаллической решётки. В результате часть их потенциала передаётся этим дефектам, величина заряда электронов уменьшается, а сила тока снижается.

Виды

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

  • проволочные резисторы (рис. 6);
  • композиционные;
  • металлоплёночные (рис. 7);
  • металлооксидные (характеризуются стабильностью параметров);
  • углеродные (угольный резистор);
  • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

Рис. 6. Проволочные резисторыРис. 7. Постоянные плёночные SMD компоненты

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

Винтегральных монокристаллических микросхемах методом трафаретной печати илиспособом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные исверхпрецизионные (высокоточные детали с допуском отклонений параметров от0,001% до 1%);
  • высокоомные (отдесятков МОм до нескольких Том);
  • высокочастотные, способныеработать с частотами до сотен МГц;
  • высоковольтные, срабочим напряжением, достигающим десятков кВ.

Можно классифицировать деталии по другим признакам, например по типу защиты от влаги или по способу монтажа:печатный либо навесной.

Виды соединения резисторов

Различают три типа соединения резисторов:

  • параллельное;
  • последовательное;
  • смешанное.

Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.

Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Терморезисторы типоразмеров 0805 и 0603

Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм.

NTC Термисторы EWTF03

Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм.

Маркировка сопротивлений SMD резисторов ряда E24 с отклонением номинала 5%

Маркир. Номинал I Маркир. Номинал I Маркир. Номинал I Маркир. Номинал
0 Ом I I I
1R0 1 Ом I 101 100 Ом I 102 1кОм I 104 100кОм
1R1 1,1 Ом I 111 110 Ом I 112 1,1кОм I 114 110кОм
1R2 1,2 Ом I 121 120 Ом I 122 1,2кОм I 124 120кОм
1R3 1,3 Ом I 131 130 Ом I 132 1,3кОм I 134 130кОм
1R5 1,5 Ом I 151 150 Ом I 152 1,5кОм I 154 150кОм
1R6 1,6 Ом I 161 160 Ом I 162 1,6кОм I 164 160кОм
1R8 1,8 Ом I 181 180 Ом I 182 1,8кОм I 184 180кОм
2R0 2,0 Ом I 201 200 Ом I 202 2,0кОм I 204 200кОм
2R2 2,2 Ом I 221 220 Ом I 222 2,2кОм I 224 220кОм
2R4 2,4 Ом I 241 240 Ом I 242 2,4кОм I 244 240кОм
2R7 2,7 Ом I 271 270 Ом I 272 2,7кОм I 274 270кОм
3R0 3,0 Ом I 301 300 Ом I 302 3,0кОм I 304 300кОм
3R3 3,3 Ом I 331 330 Ом I 332 3,3кОм I 334 330кОм
3R6 3,6 Ом I 361 360 Ом I 362 3,6кОм I 364 360кОм
3R9 3,9 Ом I 391 390 Ом I 392 3,9кОм I 394 390кОм
4R3 4,3 Ом I 431 430 Ом I 432 4,3кОм I 434 430кОм
4R7 4,7 Ом I 471 470 Ом I 472 4,7кОм I 474 470кОм
5R1 5,1 Ом I 511 510 Ом I 512 5,1кОм I 514 510кОм
5R6 5,6 Ом I 561 560 Ом I 562 5,6кОм I 564 560кОм
6R2 6,2 Ом I 621 620 Ом I 622 6,2кОм I 624 620кОм
6R8 6,8 Ом I 681 680 Ом I 682 6,8кОм I 684 680кОм
7R5 7,5 Ом I 751 750 Ом I 752 7,5кОм I 754 750кОм
8R2 8,2 Ом I 821 820 Ом I 822 8,2кОм I 824 820кОм
9R1 9,1 Ом I 911 910 Ом I 912 9,1кОм I 914 910кОм
10R(100) 10 Ом I 102 1кОм I 103 10кОм I 105 1МОм
11R(110) 11 Ом I 112 1,1кОм I 113 11кОм I 115 1,1МОм
12R(120) 12 Ом I 122 1,2кОм I 123 12кОм I 125 1,2МОм
13R(130) 13 Ом I 132 1,3кОм I 133 13кОм I 135 1,3МОм
15R(150) 15 Ом I 152 1,5кОм I 153 15кОм I 155 1,5МОм
16R(160) 16 Ом I 162 1,6кОм I 163 16кОм I 165 1,6МОм
18R(180) 18 Ом I 182 1,8кОм I 183 18кОм I 185 1,8МОм
20R(200) 20 Ом I 202 2,0кОм I 203 20кОм I 205 2,0МОм
22R(220) 22 Ом I 222 2,2кОм I 223 22кОм I 225 2,2МОм
24R(240) 24 Ом I 242 2,4кОм I 243 24кОм I 245 2,4МОм
27R(270) 27 Ом I 272 2,7кОм I 273 27кОм I 275 2,7МОм
30R(300) 30 Ом I 302 3,0кОм I 303 30кОм I 305 3,0МОм
33R(330) 33 Ом I 332 3,3кОм I 333 33кОм I 335 3,3МОм
36R(360) 36 Ом I 362 3,6кОм I 363 36кОм I 365 3,6МОм
39R(390) 39 Ом I 391 390 Ом I 393 39кОм I 395 3,9МОм
43R(430) 43 Ом I 431 430 Ом I 433 43кОм I 435 4,3МОм
47R(470) 47 Ом I 471 470 Ом I 473 47кОм I 475 4,7МОм
51R(510) 51 Ом I 511 510 Ом I 513 51кОм I 515 5,1МОм
56R(560) 56 Ом I 561 560 Ом I 563 56кОм I 565 5,6МОм
62R(620) 62 Ом I 621 620 Ом I 623 62кОм I 625 6,2МОм
68R(680) 68 Ом I 681 680 Ом I 683 68кОм I 685 6,8МОм
75R(750) 75 Ом I 751 750 Ом I 753 75кОм I 755 7,5МОм
82R(820) 82 Ом I 821 820 Ом I 823 82кОм I 825 8,2МОм
91R(910) 91 Ом I 911 910 Ом I 913 91кОм I 915 9,1МОм
106 10МОм

Резисторы или сопротивления, так же как и конденсаторы, являются самыми распространёнными компонентами электронных схем. Резисторы в исполнение для поверхностного монтажа изготавливаются посредством нанесения резистивной пасты на керамическую подложку и последующее ее спекание под воздействием высоких температур. На поверхности резистора как правило указывается номинал сопротивления в условном обозначении. Для увеличения рассеиваемой мощности и повышения стабильности характеристик керамическое основание может быть заменено на металлическое. SMD резисторы предназначены для автоматического монтажа и пайки посредством оплавления паяльной пасты в парогазовой фазе печи инфракрасного нагрева. Резисторы упаковываются в блистер ленту, которая в свою очередь наматывается на пластмассовую катушку.

Наряду с широкой номенклатурой пассивных компонентов: резисторов, конденсаторов, катушек индуктивности, дросселей, разъемов, переключателей, компания поставляет со склада активные компоненты: SMD транзисторы, SMD диоды, стабилитроны, светодиоды, микросхемы.

Типы резисторов

К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.

Постоянные

Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.

Переменные

Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.

https://youtube.com/watch?v=Kln5aSuT9jM

https://youtube.com/watch?v=UR_SlbmYh0c

Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п

Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0

;2,2 ;3,3 ;4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0

;2,0 ;3,0 ;5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А

— Линейный,Б – Логарифмический,В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось пообратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому

(Б) илиобратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной

характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

Маркировка SMD резисторов

Силовые резисторы с проволочной обмоткой бывают самых разных конструкций и типов: от стандартного меньшего алюминиевого корпуса с 25-ваттным радиатором, установленного на радиаторе, как мы видели ранее, до больших трубчатых керамических или фарфоровых силовых резисторов мощностью 1000 Вт, используемых для нагревательных элементов.

Значение сопротивления проволочных резисторов очень низкое (низкие омические значения) по сравнению с углеродной или металлической пленкой. Диапазон сопротивления силового резистора колеблется от менее 1 Ом (R005) до всего 100 кОм, поскольку для больших значений сопротивления потребуется провод с тонкой калибровкой, который может легко выйти из строя.

Резисторы с низким омическим сопротивлением и низким значением мощности, как правило, используются для датчиков тока, по закону Ома ток, протекающий через сопротивление, вызывает падение напряжения на нем.

Это напряжение может быть измерено, чтобы определить значение тока, протекающего в цепи. Этот тип резистора используется в испытательном измерительном оборудовании и контролируемых источниках питания.

Силовые резисторы большего размера с проволочной обмоткой изготовлены из коррозионностойкой проволоки, намотанной на формирователь из фарфора или керамического сердечника, и обычно используются для рассеивания высоких пусковых токов, например, возникающих в цепях управления электродвигателем, электромагнитом или элеватором / краном и тормозных цепях двигателя.

Обычно эти типы резисторов имеют стандартную номинальную мощность до 500 Вт и, как правило, соединяются вместе, образуя так называемые «банки сопротивления».

Еще одна полезная особенность силовых резисторов с проволочной обмоткой заключается в использовании нагревательных элементов, таких как те, которые используются для электрического огня, тостера, утюгов и т. Д. В этом типе применения значение мощности сопротивления используется для производства тепла, а тип проволоки из сплава сопротивления используется, как правило, из никель-хрома (нихрома), допускающего температуру до 1200 o C.

Все резисторы, будь то углерод, металлическая пленка или проволока, подчиняются закону Ома при расчете значения их максимальной мощности (мощности). Стоит также отметить, что, когда два резистора соединены параллельно, их общая мощность увеличивается. Если оба резистора имеют одинаковое значение и одинаковую номинальную мощность, общая номинальная мощность удваивается.

Где и для чего применяется

Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.

Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.

Rогр=(Uпитания-U­требуемое)/Iноминальный

Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:

Uвых=Uвх(R2/R1+R2)

Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.

https://youtube.com/watch?v=nKHmHO0hmig

https://youtube.com/watch?v=rV-mjLHDMBg

https://youtube.com/watch?v=WGkBUui8cxo

Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность. Надеемся, предоставленная информация была для вас полезной и интересной!

  • Как зависит сопротивление проводника от температуры
  • Маркировка резисторов по мощности и сопротивлению
  • Как выпаивать радиодетали из плат

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы


Рисунок 9 – Проволочные резисторы Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы


Рисунок 10 – Металлопленочные резисторы Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы


Рисунок 13 – Углеродные композиционные резисторы До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Виды резисторов по характеру сопротивления

Основная характеристика резисторов — собственно сопротивление, которое измеряется в «омах».  Обозначается единица измерения как «Ом» — по фамилии немецкого физика Георга Ома. Вторая характеристика — рассеиваемая мощность, измеряется в Ваттах (Вт). Это та мощность, которую элемент может преобразовать в тепло без повреждения работоспособности. Рассеиваемая мощность иногда отражается на схеме в виде черточек на «теле» элемента (см. на рисунке ниже справа), но точно указывается в  спецификации. В принципе, рассеиваемую мощность можно примерно определить по размерам элемента. Чем больше корпус, тем больше рассеиваемая мощность.

Обозначение рассеиваемой мощности постоянных резисторов на схеме

Существуют два типа резисторов по характеру сопротивления: постоянные и переменные. Постоянные не меняют свое сопротивление никогда (в идеале). Переменные изменяют, но принудительно. Для этого надо передвинуть бегунок, покрутить ручку или специальный регулятор. Переменные резисторы могут быть регулируемые и подстроечные. У обоих видов можно изменять сопротивление в некотором диапазоне. Только у регулируемых диапазон обычно шире. Именно они стоят на регуляторах громкости, частоты и т.д.

Переменный резистор часто можно увидеть в радиоприемниках

Есть также подстроечные резисторы, предназначенные для точной настройки заданных параметров радио- и электронных устройств в процессе их выпуска из производства при настройке после монтажа или в процессе ремонта. Как правило, они имеют не слишком широкий диапазон. На подстроечных моделях есть небольшой регулятор под отвертку (как правило).

Расчет резисторов

Для корректного подбора компонента в цепь потребуется найти значения его ключевых показателей. При разных типах соединений нескольких компонентов параметры будут принимать различные значения.

Последовательное соединение

При использовании последовательной схемы итоговый показатель сопротивления равен сумме отдельных значений для каждого резистора. Пользуясь этим правилом, можно узнать, компонент с каким показателем надо приобрести. Например, требуется получить в цепи 220 Ом, есть устройство на 130 Ом. Следовательно, надо купить второе на 220-130=90 Ом. Ток, идущий в цепи, и ток на каждом резисторном элементе в этом случае имеют одно и то же значение.

Параллельное соединение

Формула для общего сопротивления:

Из нее можно узнавать целевое сопротивление элемента, который надо приобрести. Электроток в неразветвленной части сети в этом случае равен сумме токов отдельных веток.

Важно! В отличие от предыдущего случая, данная схема рекомендуема к использованию, если показатели для отдельных элементов превышают общее требуемое R

Смешанное соединение

Оно включает в себя сочетания структур двух ранее обозначенных типов. Чтобы посчитать показатели для отдельных резисторов, схему понадобится упростить.

Мощность

Для выбора нужной детали надо знать, как правильно определить мощность резистора. Это можно сделать, опираясь на формулы:

Нужно учитывать, что использование детали с параметром, превышающим рекомендуемый, допустимо, обратный случай – нет.

SMD резисторы — маркировка номинальных значений SMD резисторов

SMD резисторы — маркировка чип-резисторов

SMD резисторы – маркировка которых интересует многих радиолюбителей. Данные резисторы изготавливаются в миниатюрных корпусах, сделанных как правило из керамики и предназначенные для поверхностного монтажа. Этот элемент является самым распространенным компонентом в современных радиоэлектронных схемах.

Различные компании, производящие SMD резисторы, делают много всевозможных модификаций своей продукции, кодовые обозначения, которых имеют отличие от других. В связи с этим, электронщикам, которым приходится часто выполнять ремонт электронной техники или заниматься сборкой печатных плат, нужно четко знать кодовые обозначения резисторов.

Предназначение чип-резисторов

Основная функция резисторов в схеме — это токоограничение в конкретной части электрического тракта. Один из ближайших примеров, которым можно показать резистор в действии — это включение сопротивления в питающую цепь LED-диодов либо в эмиттерную цепь биполярного транзистора установленного в усиливающем каскаде. Приведенная ниже таблица окажет вам существенную помощь в расшифровке кодовых обозначений.

Таблица расшифровки номинальных значений SMD резисторов

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Маркировка SMD резисторов

SMD компоненты

usilitelstabo.ru

Как измерить входное сопротивление

Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?

1)Замерить напряжение Uвх, подаваемое на этот блок

2)Замерить силу тока Iвх, которую потребляет наш блок

3) По закону Ома найти входное сопротивление Rвх.

Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.

Мы  с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).

Падение напряжения на резисторе R обозначим, как UR

Из всего этого получаем…

Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!

Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МегаОм, а резистор взяли  R=1 КилоОм. Пусть генератор выдает постоянное напряжение U=10 Вольт. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.

В результате получается цепь:

 Высчитываем силу тока в цепи в Амперах

Получается, что падение напряжения на сопротивлении R в Вольтах будет:

Грубо говоря 0,01 Вольт. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем китайском мультиметре.

Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также  очень большого номинала.  В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.

Основные характеристики

Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:

  1. Номинальное сопротивление.
  2. Максимальная рассеиваемая мощность.
  3. Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.

В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!