Как проверить фоторезистор мультиметром

Содержание

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.


Фото — обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки)

Обратите внимание, цоколевка показана также, как у обычных транзисторов

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото — формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Что такое фотодиод?

Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток. В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов. Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе –  подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону.  Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Устройство


Самый простой вариант модели фр 602 и других вариантов состоит всего из нескольких основных компонентов:

  1. Переменный резистор.
  2. Диод.
  3. Реле для управления
  4. Фоторезистор.
  5. Два транзистора.

Роль транзисторов в 602 и других моделях обычно играют приборы, которые обозначаются как KT315Б. Они включаются по схеме составных резисторов, обмотка реле вполне справляется с нагрузкой данной части. Большой коэффициент усиления всегда характерен для подобных схем. Входное сопротивление тоже сохраняет высокий уровень. Благодаря этому, есть возможность для применения фоторезистора, отличающегося высоким показателем по сопротивлению.

Схема фотореле

Схема фотореле фр 602 на 12В предполагает, что обычный транзистор и транзистор номер 2 открываются, когда увеличивается освещение фотоустройства, включенного между базой первого транзистора, и коллектором. В коллекторной цепи второго транзисторного механизма появляется ток, что и приводит к срабатыванию реле. Оно включает или выключает нагрузку через свои контакты, в зависимости от пользовательских настроек.

Защитный код с обозначением КД522 включается для того, чтобы защитить устройство от воздействия ЭДС. Включение транзистора переменного типа с номиналом 10 оКм нужно, чтобы можно было настроить чувствительность системы, которой связывается база и эмиттер в первом транзисторе.

ФР 602 на 12 в и другую мощность применяют не только для домового, но и для уличного освещения. От того, сколько выводов идёт к системе света, зависит разновидность используемой схемы. Для защиты от замыкания и перегрузки устанавливаются автоматы в электрощите. Так и работают любые электрические выключатели.

Есть в таком случае несколько особенностей у питания.

  • Нужен источник постоянного напряжения на 5-15 В.
  • Устройства с обозначением РЭС 47 или 9 используются при напряжении источника в 6 вольт.
  • Приборы с обозначением РЭС 15 или 49 нужны при работе с напряжением в 12 Вольт.

Схема подключения

Возникает необходимость в создании специальной платы, через которую всегда проводится монтаж. Хорошо, если она будет печатной. После этого для создания фотореле своими руками выполняются следующие действия:

  1. На плате укрепляем резисторный механизм переменного действия, транзисторы и само реле.
  2. Необходимо создать несколько отверстий, чтобы правильно вывести все элементы схемы.
  3. Паяльником, с помощью проводов проводим соответствующие соединения.

Можно использовать лампу накаливания, когда схема 602 настраивается. При этом помещение должно быть затенено. Поток света у такой лампы обычно можно регулировать.

Чтобы правильно подобрать порог включения прибора, надо работать в подходящих условиях освещения. С этим вопросом всегда поможет переменный резистор. Нужно установить постоянный резистор, а не переменный, если не планируется отдельно настраивать порог для срабатывания.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным

Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.


Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Проверка сопротивления на плате

Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:

  • отключить источник питания;
  • отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
  • произвести замер.

Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.

Кроме постоянных резисторов, существуют следующие виды элементов:

  • переменный (реостат);
  • подстроечный;
  • термистор или терморезистор с отрицательным температурным коэффициентом;
  • позистор с положительным температурным коэффициентом;
  • варистор изменяет свои значения от приложенного к нему напряжения;
  • фоторезистор меняет свои значения от направленного на него светового потока.

Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа. Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора. Аналогично нужно провести измерение со вторым крайним выводом потенциометра.

Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры. Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться. Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.

Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.

Терморезисторы в схеме используются как температурные стабилизаторы каскадов в усилителях мощности или блоках питания, для защиты от перегрева. Терморезистор может выглядеть как бусина с двумя проводами, а также иметь форму пластины с двумя выводами.

Устройство

От модели к модели меняется форма корпуса или активный слой, но одно остается неизменно.

Это основа — подложка из керамического материала.

На подложке змейкой наносят методом напыления тончайший слой проводника из золота или платины.

Также в качестве полупроводников могут быть использованы различные типы фоторезистивных материалов.

Если необходимо зафиксировать видимый свет с длинной волны:

То чаще всего применяется селенид кадмия и сульфид кадмия.

Для фиксации инфракрасного излучения пластины могут быть сделаны из:

  • германия в чистом виде либо с добавлением небольших примесей;
  • кремниевыми;
  • сульфида свинца и прочих химических сочетаний на его основе.

В чистом виде германий или кремний встречается в деталях, обладающих внутренним фотоэффектом.

Остальные примеси могут, применены в устройствах с внешним фотоэффектом.

Производство первых серийных сернисто-висмутовых фоторезисторов в нашей стране было налажено в 1948 г.

Позднее их заменили на сернисто-кадмиевые и селенисто-кадмиевыми модели, у которых проявились гораздо лучшие параметры.

В любом случае свойства остаются прежними.

Напыленные, таким образом, слои, имеют вывода на электроды, по которым попадает электрический ток.

Сверху всю конструкцию вмещают в корпус, защищенный тонким слоем прозрачного пластика, через который попадают световые потоки.

Форма размеры и материал защитного корпуса могут быть различными. Эти параметры определяются производителем, исходя из предназначения фоторезистора и выглядят по-разному.

Устройство обычного фоторезистора может быть разного исполнения:

  • в металлическом корпусе;
  • в пластиковом корпусе;
  • открытого типа.

Не всегда применяется и напыление металлов. Токопроводящий слой может быть вырезан из тонкого слоя полупроводника.

Встречаются варианты и пленочных фотодатчиков.

Параметры фоторезисторов

Более подробно о параметрах и характеристиках фоторезисторов будет рассказано в отдельной статье. Здесь же разберём лишь несколько важных параметров, которые следует знать при подборе фоторезисторов, работающих при больших потоках излучения в видимом спектре.

RT – темновое сопротивление фоторезистора (Ом). Сопротивление фоторезистора, измеренное при отсутствии освещения при поданном на него рабочем напряжении.

В даташитах на импортные изделия указывается как Dark resistance (Ω). Величина темнового сопротивления фоторезисторов обычно составляет единицы-десятки мегаом;

RСВ – световое сопротивление фоторезистора (Ом). Сопротивление фоторезистора при его освещении (или инфракрасном облучении). В даташитах на импортные изделия указывается как Light resistance (Ω). Стоит отметить, что данный параметр указывается для определённого уровня освещённости фоторезистора, измеряемого в люксах (lux или lx). Как правило, для импортных фоторезисторов (типа PGM, GM, GL), которые работают в видимом спектре, это 10 люкс.

P или Pмакс – допустимая мощность рассеивания или максимальная мощность (Вт, чаще мВт). Мощность, которую может выдержать фоторезистор длительное время без необратимого изменения его основных параметров. Допустимая мощность указывается для определённой температуры окружающей среды, как правило, это 25°С.

В англоязычной документации мощность рассеивания носит название Power dissipation – PD(W или mW). Стоит отметить, что при чрезмерном нагреве, что характерно при превышении допустимой мощности, фоточувствительный элемент фоторезистора ещё может работать, но его эксплуатационные характеристики сильно ухудшаются, обычно, необратимо.

Uр – рабочее напряжение (В). Постоянное напряжение, подаваемое на фоторезистор, при котором гарантируются его номинальные параметры при длительной эксплуатации в заданных условиях. Рабочее напряжение фоторезисторов может быть от нескольких вольт до сотен вольт.

В справочниках на импортные фоторезисторы обычно указывается величина максимального постоянного напряжения (Max Voltage, VDC), которое способен выдержать фоторезистор конкретной серии.

Понятное дело, что максимальное напряжение падает на сопротивлении фоторезистора в затемнённом состоянии, когда его сопротивление очень велико (до нескольких десятков мегаОм). Также не стоит забывать о том, что при понижении температуры темновое сопротивление фоторезистора растёт, что может привести к тому, что напряжение на нём превысит максимальное и фоторезистор выйдет из строя.

При увеличении напряжения, подаваемого на фоторезистор, световой ток, проходящий через него также возрастает. В связи с этим, увеличивается нагрев фоточувствительного элемента, поэтому рабочее напряжение связано с максимальной мощностью фоторезистора, а также ограничено напряжением пробоя.

Как правило, чем большие габариты имеет фоторезистор, тем он мощнее и тем большее напряжение он способен выдержать.

Стоит также знать, что рост температуры окружающей среды и, как следствие, температуры самого фоточувствительного элемента приводит к ухудшению основных фотоэлектрических параметров, например, снижению вольтовой чувствительности и ухудшению порога чувствительности.

На параметры фоторезисторов также сильно влияет и постоянная фоновая засветка. Как правило, она приводит к ухудшению фотоэлектрических параметров, особенно у фоторезисторов на основе CdS/CdSe, работающих при больших световых потоках.

К недостаткам фоторезисторов можно отнести их инерционность, а также необходимость эксплуатации некоторых изделий при очень низких температурах, что требует применения специальных микрохолодильников или охлаждающих резервуаров, где охлаждение осуществляется за счёт жидкостей или газов.

Принцип работы

Разберем, как работает фоторезистор?

Когда он неактивен это, по сути, диэлектрик. Чтобы устройство начало проводить ток на него должно быть оказано внешнее воздействие. Тепловое или, как в нашем случае, световое.

Фотоны света, попадая на активный слой, насыщают его электронами, и теперь появляется способность пропускать электрический ток. Возникает прямая зависимость, которую можно отобразить на графике.

Из графика хорошо видно, что чем больше образуется электронов, тем меньшее электрическое сопротивление у полупроводника. На этом свойстве фоторезистора и основан принцип его работы.

Причем эффект образования электронов способен вызвать как видимый спектр излучения так и инфракрасный. В последнем варианте они способны создавать значительно большую энергию.

Восприимчивость фоторезистивного слоя можно поднять за счет легирования его различными добавками. После такой обработки уменьшаются фотосопротивления, но повышается фоточувствительность в видимых спектрах света.

Этим элементам характерен процесс старения. Он выражается:

  • в снижении омического сопротивления;
  • изменяется фототок;
  • растет чувствительность.

Этот процесс непродолжительный по времени — до нескольких сотен часов и потом параметры становятся стабильны.

Принцип действия фоторезисторов

С помощью фоторезисторов определяется наличие или отсутствие света, можно проверить и измерить интенсивность светового потока. В полной темноте их сопротивление существенно возрастает и может достигнуть 1 МОм. Под влиянием света сопротивление, наоборот, начинает резко падать, а его значение будет полностью зависеть от интенсивности света.

В зависимости от материалов, применяемых для изготовления фоторезисторов, эти устройства разделяются на две группы, основными признаками которых являются внутренний и внешний фотоэффект.
Элементы с внутренним фотоэффектом производятся из нелегированных материалов – германия или кремния. Принцип действия их довольно простой. Попадая на поверхность устройства, фотоны приводят в движение электроны. В результате, начинается их перемещение из валентной области в зону проводимости. Далее, в материале в большом количестве появляются свободные электроны, способствуя улучшению проводимости и соответствующему уменьшению сопротивления. Это в общих чертах объясняет, как работает фоторезистор.

Достижение внешнего фотоэффекта становится возможным за счет материалов, из которых изготавливается фоторезистор. Для придания нужных свойств в них добавляются специальные примеси, известные как легирующие добавки. Они изменяют параметры в нужную сторону и способствуют созданию новой энергетической зоны, насыщенной электронами, поверх имеющейся валентной области. Такие электроны требуют гораздо меньшее количество энергии для перехода в зону проводимости. Результатом этого становится повышенная чувствительность фоторезисторов к разной длине световых волн.

Несмотря на различие физических свойств, каждое устройство обладает способностью к уменьшению сопротивления при воздействии на них светового потока. Чем выше рост интенсивности света, тем большее падение напряжения наблюдается у фоторезистора. В графическом выражении это свойство отображается в виде обратной нелинейной функции интенсивности света.