Паразитные параметры
Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.
Эквивалентная схема
Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.
Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.
Эквивалентное последовательное сопротивление (Rs)
Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.
По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.
Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.
Эквивалентная последовательная индуктивность (Li)
Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.
Тангенс угла диэлектрических потерь
Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.
Температурный коэффициент ёмкости (ТКЕ)
ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.
Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.
Диэлектрическая абсорбция
Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.
Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов
Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями
Паразитный пьезоэффект
Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.
Самовосстановление
Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.
Советуем изучить Аналоговый сигнал – определение и особенности
Что такое начальная ёмкость?
Начальной или минимальной ёмкостью называется та ёмкость переменного конденсатора, которую он имеет при полностью выведенных пластинах. Начальная ёмкость имеет большое значение для перекрытия диапазона: чем она меньше, тем обычно лучше конденсатор, так как с таким конденсатором в контуре получается значительно большее перекрытие.
Пусть, например, имеется переменный конденсатор с конечной ёмкостью в 500 см и с начальной ёмкостью в 20 см. При введении его подвижных пластин от нуля до максимума ёмкость изменяется в 25 раз (500:20=25).
В формуле Томсона , которая связывает индуктивность контура, ёмкость контура и длину волны, ёмкость находится под корнем. Поэтому при изменении ёмкости конденсатора в 25 раз длина волны изменится не в 25 раз, а в V25; т. е. в 5 раз.
Если начальная волна была 200 м, конечная будет в 5 раз больше, т. е. 1 000 м. Посмотрим, какое перекрытие получится в контуре, если начальная ёмкость переменного конденсатора будет равна не 20 см, а хотя бы 50 см?
В этом случае ёмкость конденсатора при повороте его пластин от минимума до максимума изменится в 10 раз (500:50=10). Длина волны изменится приблизительно (V10) в 3,3 раза, т. е. если начальная волна контура равна 200 м, то конечная будет равна 660 м. Как видим, когда начальная ёмкость конденсатора меньше, то перекрытие получается гораздо большим.
В действительности в контурах, работающих в приёмниках, таких больших перекрытий не получается, потому что к начальной ёмкости переменного конденсатора в приёмнике добавляются ещё как бы “паразитные” ёмкости — ёмкость катушки, ёмкость монтажа, входная ёмкость лампы.
Поэтому начальная ёмкость переменного конденсатора, работающего в приёмнике, всегда бывает значительно больше, чем собственная начальная ёмкость. Таким образом, при расчёте контуров следует учитывать не только одну начальную ёмкость переменных конденсаторов, но и ёмкость монтажа.
Рис. 1. Межвитковая ёмкость катушки, емкость между витками и шасси.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).
Что такое конденсатор?
Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.
Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).
Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.
Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.
Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.
Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.
Эксплуатационные характеристики
Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:
- номинальное напряжение,
- полярность,
- ток утечки,
- сопротивление материала обкладок,
- диэлектрические потери,
- зависимость емкости от температуры.
Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:
https://youtube.com/watch?v=NviMZ2ghaNY
Q=UIsin 90
В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения — параллельной или последовательной.
Определение тангенса угла диэлектрических потерь
При параллельном соединении величина потерь определяется отношением токов:
tgδ = Ir/Ic = 1/(ωCR)
В случае последовательного соединения угол вычисляется соотношением напряжений:
tgδ = Ur/Uc = ωCR
В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.
https://youtube.com/watch?v=aLBasONz_lc
Номинальное напряжение
Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.
Полярность
Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.
Температурный коэффициент емкости
Он выражается отношением ΔC/CΔT где ΔT изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.
Разрушение конденсатора
Выход конденсатора из строя обусловлен двумя основными причинами — пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.
Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых — к пробою и химической реакции между танталом и оксидом марганца.
https://youtube.com/watch?v=8azgFci_ixQ
Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.
Энергия заряженного конденсатора
Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.
Энергия заряженного конденсатора.Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора.
В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.4). При разрядке конденсатора лампа вспыхивает.
Энергия конденсатора превращается в другие формы: тепловую, световую.
Выведем формулу для энергии плоского конденсатора.
Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.5). Согласно формуле Wp=qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:
(1)
где q — заряд конденсатора, a d — расстояние между пластинами.
(2)
Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.
Заменив в формуле (2) разность потенциалов или заряд с помощью выражения для электроемкости конденсатора, получим
(3)
Можно доказать, что эти формулы справедливы для энергии любого конденсатора, а не только для плоского.
Энергия электрического поля.Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напряженность.
Совет
Так как напряженность электрического поля прямо пропорциональна разности потенциалов
(U = Ed),то согласно формуле
(4)
энергия конденсатора прямо пропорциональна напряженности электрического поля внутри него: Wp~E2. Детальный расчет дает следующее значение для энергии поля, приходящейся на единицу объема, т.е. для плотности энергии:
где ε0 — электрическая постоянная
Постоянный ток. Сила и плотность тока. Закон Ома.
Постоянный электрический ток
Краткие теоретические сведения
1. Сила тока определяется по формуле
Для постоянного тока
где – заряд, прошедшей через поперечное сечение проводника за время .
2.Если ток постоянный, плотность тока во всем сечении однородного проводника не изменяется ,
где – площадь поперечного сечения проводника.
Закон Ома
для однородного участка цепи имеет вид:
где – разность потенциалов (напряжение) на концах участка; – сопротивление.
Для неоднородного участка цепи этот закон записывается так:
где – ЭДС источника тока на этом участке; – внутреннее сопротивление источника;
– внешнее сопротивление цепи; – падение напряжения на участке 1-2.
· Для замкнутой цепи .
4.Сопротивление цилиндрического однородного проводника равно ,
где – удельное сопротивление; – удельная проводимость;
– длина; S – площадь поперечного сечения проводника.
Вектор магнитной индукции.
Вектор магнитной индукции – аналог напряженности электрического поля. Основной силовой характеристикой магнитного поля является вектор магнитной индукции.Вектор индукции магнитного поля B⃗направлен от южного полюса S стрелки (свободно вращающейся в магнитном поле) к северному N
Закон Ампера.
Закон Ампера – сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Магнитный момент витка с током – физическая величина характеризующий магнитные свойства системы в виде кругового витка с током Где, I ток протекающий по витку S площадь витка с током n нормаль к плоскости в которой находится виток
Емкость пластин и генератор Ван де Граафа
Конденсаторы обычно представляют собой две пластины, между которыми проложен слой диэлектрика.
[Емкость между двумя пластинами, Ф
] = [Диэлектрическая проницаемость вакуума, Ф/м ] * [Диэлектрическая проницаемость диэлектрика между пластинами ] * [Площадь пластин, кв. м ] / [Расстояние между пластинами, м ]
[Диэлектрическая проницаемость вакуума, Ф/м
] приблизительно равна 8.854E-12, [Расстояние между пластинами, м ] много меньше линейных размеров пластин.
Рассмотрим такой интересный случай. Пусть у нас есть две пластины с определенной разностью потенциалов. Начнем их физически разносить в пространстве. Мы тратим энергию, так как пластины притягиваются друг к другу. Напряжение между пластинами будет расти, так как заряд остается прежним, а емкость убывает.
На этом принципе основана работа генератора Ван де Граафа. Там на ленте транспортера установлены металлические пластины или крупицы вещества, способного переносить заряд. Когда эти крупицы приближаются к заземленной пластине, между ними и землей прилагается некоторое, довольно высокое напряжение (1000 и более Вольт). Они заряжаются. Дальше транспортер увозит их от заземленной пластины. Емкость между ними и землей падает в тысячи или десятки тысяч раз, напряжение, соответственно, растет в то же количество раз. Далее эти крупицы контактируют с телом, на котором накапливается заряд, и отдают ему часть своего заряда. Так можно получить 10 или даже 100 миллионов Вольт.
Электрическая емкость конденсатора
Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.
Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:
Будет интересно Постоянный ток — определение и параметры
С = q/ϕ.
За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.
Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.
Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:
С = q/ U.
1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:
С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.
Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.
Будет интересно Что такое электролиз и где он применяется на практике
Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.
Строение конденсатора.
Основные параметры
Главные параметры конденсаторов, которые используются при проектировании и ремонте устройств радиоэлектроники, – это емкость и номинальное напряжение. Кроме этого, существует еще несколько дополнительных параметров, которые могут влиять на элементы схемы. Конденсаторы имеют следующие основные характеристики.
Ёмкость
Это самый основной параметр, который характеризует накопление электрического заряда. Расчет значения производится по различным формулам, в зависимости от конструкционных особенностей: плоский, цилиндрический или круглый конденсатор. На практике большая их часть выпускается как разновидности плоского. Емкость современных устройств варьируется от единиц пикофарад до десятков тысяч микрофарад и даже единиц фарад.
Удельная ёмкость
Этот относительный параметр привязывает габариты к величине емкости. Таким образом, чем выше удельная емкость, тем меньше габариты конструкции, однако при этом может упасть электрическая прочность (рабочее напряжение).
Плотность энергии
Данный параметр важен при использовании конденсаторов в качестве накопителей энергии, определяет величину энергии на единицу массы или объема элемента.
Номинальное напряжение
Значение напряжения, при котором сохраняются рабочие параметры в течение срока службы, называется номинальным. Рабочее напряжение должно быть меньше номинального.
Важно! Превышение номинального напряжения чревато выходом элемента из строя. Электролитический конденсатор при этом может разрушиться со взрывом. Вопреки распространенному мнению, элемент, включенный в цепь с напряжением, в несколько раз меньше номинального, сохраняет все остальные параметры
Вопреки распространенному мнению, элемент, включенный в цепь с напряжением, в несколько раз меньше номинального, сохраняет все остальные параметры.
Полярность
Такие виды конденсаторов, как электролитические, зачастую требуют включения в цепь с соблюдением полярности. Поскольку такие элементы используются, в основном, как накопители или фильтры, это не составляет затруднений. Несоблюдение полярности приводит к:
- несоответствию емкости;
- повреждению.
Маркировка обязательно содержит информацию о полярности подключения.
Опасность разрушения (взрыва)
Разрушение со взрывом характерно для электролитических конденсаторов. Причиной взрыва является нагрев, который возникает из-за:
- несоблюдения полярности;
- расположения рядом с источниками тепла;
- старения (увеличения утечки и повышения эквивалентного сопротивления).
Для уменьшения последствий разрушения на корпусе в торце ставят предохранительный клапан или формируют насечки на крышке. Такая конструкция гарантирует, что при резком увеличении давления внутри корпуса скопившиеся газы и электролит выделяются через клапан или разрушенную по насечкам крышку. Таким образом, предотвращается взрыв, при котором обкладки и электролит разбрасываются по большой площади и вызывают замыкание элементов плат. Охлаждение устройства снижает вероятность разрушения.
Последствия разрушения
Единица измерения емкости
В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:
= Ф, где С – обозначение ёмкости устройства.
Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.
Формула для расчёта электроёмкости записывается следующим образом:
- Dq – заряд (измеряется в кулонах, или Кл),
- U – разность потенциалов между обкладками (измеряется в вольтах или В).
Следовательно, 1Ф = 1Кл / 1В.
То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.
В фарадах измеряются электроёмкости проводников и конденсаторов.
Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.
Единица измерения электроёмкости в других системах
Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:
- 1см » 1,1126 · 10-12Ф,
- 1Ф » 8,99 · 1011 статФ.
Сантиметр по-другому может называться статфарад, или статФ.
В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:
1абф = 1·109 Ф = 1ГФ.
Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.