Преимущества использования
Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы.
Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:
- Существенно больший ресурс, нежели у коллекторных машин.
- Высокий уровень КПД.
- Мощность выше, нежели у коллекторных моторов.
- Скорость вращения набирается намного быстрее.
- Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
- Очень простая эксплуатация привода.
- При работе не нужно использовать дополнительные компоненты для охлаждения.
Источник
Устройство и принцип действия
Основными элементами БДПТ являются:
- ротор, на котором укреплены постоянные магниты;
- статор, на котором установлены обмотки;
- электронный контроллер.
По конструкции такой двигатель может быть двух типов:
с внутренним расположением ротора (inrunner)
с внешним расположением ротора (outrunner)
В первом случае ротор вращается внутри статора, а во втором – ротор крутится вокруг статора.
Двигатель типа inrunner используется в том случае, когда необходимо получить большие обороты вращения. Этот двигатель имеет более простую стандартную конструкцию, которая позволяет использовать неподвижный статор для крепления двигателя.
Двигатель типа outrunner подходит для получения большого момента при низких оборотах. В этом случае крепление двигателя производится с использованием неподвижной оси.
Двигатель типа inrunner — большие обороты, низкий крутящий момент. Двигатель типа outrunner — маленькие обороты, высокий крутящий момент.
Число полюсов в БДПТ может быть разным. По числу полюсов можно судить о некоторых характеристиках двигателя. Например, двигатель с ротором, имеющим 2 полюса, имеет большее число оборотов и малый момент. Двигатели с увеличенным количеством полюсов имеют больший момент, но меньшее число оборотов. Изменением числа полюсов ротора можно менять число оборотов двигателя. Таким образом, изменяя конструкцию двигателя, производитель может подобрать необходимые параметры двигателя по моменту и числу оборотов.
Step 3: Electromagnet
A simple electromagnet consists of a coil of magnet wire wrapped around a steel core. We used 24 gauge, single strand copper magnet wire with a thin, enamel insulation. A bolt became the steel core.
When we apply a voltage to it, it becomes a magnet. With the electromagnet positioned just right, it should push the rotor’s magnet away. Now all we have to do is turn it on and off at just the right moment.
We want to turn the electromagnet on just after one of the rotor magnet passes the bolt, to push it away. After a little bit of travel, say 30 degrees or so, it should turn back off. How can we do this switching electronically?
Как устроен бесщеточный двигатель
Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.
В настоящее время существует несколько типов устройств, имеющих различные характеристики.
С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.
Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.
Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Конструкция и принцип действия
«Brushless motor» в буквальном переводе означает бесщеточный двигатель, в конструкции которого отсутствует коллектор и щеточный узел. Также можно встретить сокращение BLDC, которым именуют бесщеточный электродвигатель постоянного тока.
Классический коллекторный двигатель
Щеточный узел — это механическая контактная часть якоря электродвигателя. С помощью него через пластины коллектора подается напряжение на обмотку якоря. Электрический ток, протекая по проводнику, вызывает электромагнитное поле. Магнитное поле обмотки якоря, взаимодействуя с постоянным магнитным полем статорных обмоток, приводит к возникновению крутящего момента на валу электродвигателя и его вращению. Чтобы вращение вала сохранялось постоянно, напряжение на отдельные проводники якорной обмотки нужно подавать в определенной последовательности. Электрический ток должен протекать по рамкам якорной обмотки в нужный момент, а электромагнитное поле, наводимое в проводниках, взаимодействовало с постоянным магнитным полем обмоток статора. В двигателе постоянного тока эту функцию выполняет коллекторный узел на якоре электродвигателя.
В бесщеточном электродвигателе коллектор и щетки отсутствуют, но принцип взаимодействия постоянного магнитного поля якоря с электромагнитным полем обмоток статора остается неизменным. Только в BLDC моторе нужно подавать постоянное напряжение на обмотки статора в определенные интервалы времени, имитируя работу коллектора.
Как правило, в конструкции статора бесщеточного мотора используются три пары обмоток, и напряжение на них подается поочередно. При подаче напряжения на первую пару обмоток якорь с постоянными магнитами поворачивается, выравнивая свое положение в соответствии с направлением силовых линий возникшего магнитного поля. В этот момент напряжение с первой пары обмоток снимается и подается на вторую пару. Поскольку якорь электродвигателя обладает определенным моментом инерции, он не останавливается моментально, а продолжает свое вращение, и его магниты начинают взаимодействовать со следующим магнитным полем. Так продолжается до тех пор, пока на обмотки статора поочередно подается напряжение.
Это упрощенная схема работы Brushless мотора. На самом деле, для усиления крутящего момента и исключения «провалов» его полки, в работе постоянно находятся две пары обмоток. Одна из них притягивает постоянные магниты якоря в моменты, когда они находятся до средней линии полюса катушки, а вторая подталкивает, как только полюс катушки пройден центральной частью постоянного магнита якоря. На первую пару катушек подается напряжение прямой полярности, а на вторую — обратной.
Для определения, на какие пары катушек нужно подать напряжение и какой полярности, в системе установлен датчик положения ротора. Он состоит из трех датчиков Холла, дающих контроллеру сигнал о необходимости формирования напряжения на каждой из пар катушек статора.
На видео наглядно проиллюстрирована работа бесщеточного двигателя:
https://youtube.com/watch?v=7N9CHEF2214
Что лучше
Преимуществ у бесщеточного мотора больше. Первое – КПД. Оно составляет 90%, а у аналога – лишь 60%. Если проще, то при одинаковой емкости батареи, инверторные шуруповерты прослужат дольше без подзарядки. Это важная характеристика, если приходится работать в отдалении от источника энергии.
Вес меньше у бесщеточной модели. Это снижает нагрузку на руку и облегчает эксплуатацию. Сравнивая характеристики, можно сказать, что инверторный шуруповерт полезнее, эффективнее и надежнее. Единственная проблема – стоимость.
Любой инструмент сломается рано или поздно. Если нет необходимости в точности, а модель понадобится для нечастого бытового пользования, то многие выбирают дешевые щеточные двигатели. Однако когда требуется взять аппарат, способный прослужить долго, то рекомендуется не жалеть средств и купить бесщеточный шуруповерт.
Шуруповерт выбирается исходя из предпочтений. Бесщеточная модель полезнее и будет более выгодной покупкой, если пользователь может себе позволить вложиться в инструмент.
Принцип работы БДКП
В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.
Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.
Различия в конструкции щеточного и безщеточного двигателя
Щетки внутри электродвигателей используются для подачи тока на обмотки двигателя через контакты коммутатора. Бесщеточный мотор не имеет токоведущих коммутаторов. Поле внутри бесщеточного двигателя переключается через усилитель, запускаемый коммутирующим устройством, таким как оптический датчик.
В щеточном двигателе постоянного тока используется конфигурация витых проволочных катушек, якоря, действующего как двухполюсный электромагнит. Направленность тока меняется дважды за цикл с помощью коммутатора, механического поворотного переключателя. Это облегчает протекание тока через якорь; таким образом, полюса электромагнита тянут и давят на постоянные магниты вдоль внешней стороны двигателя. Затем коммутатор меняет полярность электромагнита якоря, когда его полюса пересекают полюса постоянных магнитов.
В отличие от бесщеточного двигателя, в качестве внешнего ротора используется постоянный магнит. Кроме того, он использует три фазы катушек и специальный датчик, который отслеживает положение ротора. Когда датчик отслеживает положение ротора, он отправляет опорные сигналы на контроллер. Контроллер, в свою очередь, активирует катушки структурированным образом — одна фаза за другой.
Перспективы бесщеточных шуруповертов на рынке электроинструмента
Переход на бесщеточные инструменты неизбежен, поскольку они выгодны в первую очередь самим производителям ввиду унификации производственных процессов, уменьшению количества составных частей и улучшения технических характеристик выпускаемых моделей. Конечному пользователю такой переход абсолютно ничем не грозит. Шуруповерты как закручивали винты и саморезы, так и будут, исходя из своих технических возможностей.
Для профессиональной деятельности однозначно стоит смотреть в сторону бесщеточных моделей. Они экономичней, шустрее и надежней. Каждый рубль, вложенный в их покупку, окупится сторицей.
А вот домашнему мастеру стоит взвесить все «за» и «против», реально оценить возможную загруженность инструмента и свою готовность отдать больше денег за современные технологии.
Бесщеточный двигатель vs щеточного двигателя
Уже несколько лет мы наблюдаем, как бесщеточный двигатель доминирует в индустрии передовых электродвигателей. Действительно ли имеет значение использовать бесщеточный мотор? Да, конечно. Между ними есть существенная разница.
Давайте посмотрим на основы двигателя постоянного тока. Двигатель постоянного тока — все о магнитах и электромагнетизме.
Противоположно заряженные магниты притягивают друг друга. Основная идея двигателя постоянного тока заключается в том, чтобы удерживать противоположный заряд вращающегося компонента, притянутого к неподвижным магнитам (статору) перед ним, чтобы он генерировал постоянное притяжение. Это движение тяги вперед вызвано физическим поведением электромагнетизма.
Принцип работы БДКП
В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.
Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.
Как устроен бесщеточный двигатель
Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.
В настоящее время существует несколько типов устройств, имеющих различные характеристики.
С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.
Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.
Применение
Области применения БДТП следующие:
- создание моделей;
- медицина;
- автомобилестроение;
- нефтегазовая промышленность;
- бытовые приборы;
- военная техника.
Использование БД для авиамоделей дает значительное преимущество по мощности и габаритам. Сравнение обычного коллекторного двигателя типа Speed-400 и БДТП того же класса Astro Flight 020 показывает, что двигатель первого типа имеет кпд 40-60%. Кпд второго двигателя в тех же условиях может достигать 95%. Таким образом, использование БД позволяет увеличить почти в 2 раза мощность силовой части модели или время ее полета.
Благодаря малому шуму и отсутствию нагревания при работе БДПТ широко используются в медицине, особенно в стоматологии.
В автомобилях такие двигатели используются в подъемниках стекол, электростеклоочистителях, омывателях фар и электрорегуляторах подъема кресел.
Отсутствие коллектора и искрения щеток позволяет использовать БД в качестве элементов запорных устройств в нефтегазовой промышленности.
В качестве примера использования БД в бытовой технике можно отметить стиральную машину с прямым приводом барабана компании LG. Эта компания использует БДТП типа Outrunner. На роторе двигателя имеется 12 магнитов, а на статоре – 36 катушек индуктивности, которые намотаны проводом диаметром в 1 мм на сердечники из магнитопроводящей стали. Катушки соединены последовательно по 12 штук в фазе. Сопротивление каждой фазы равно 12 Ом. В качестве датчика положения ротора используется датчик Холла. Ротор двигателя крепится к баку стиральной машины.
Повсеместно данный двигатель используется в жестких дисках для компьютеров, что делает их компактными, в CD и DVD приводах и системах охлаждения для микро-электронотехнических устройств и не только.
Наряду с БД малой и средней мощности в промышленности с тяжелыми условиями работы, судовой и военной промышленностях все больше используются большие БДПТ.
БД большой мощности разработаны для американских ВМС. Например, компания Powertec разработала БДТП мощностью 220 кВт со скоростью в 2000 об/мин. Момент двигателя достигает 1080 Нм.
Кроме указанных областей, БД применяются в проектах станков, прессов, линий для обработки пластмасс, а также в ветроэнергетике и использовании энергии приливных волн.
Различия в конструкции щеточного и безщеточного двигателя
Щетки внутри электродвигателей используются для подачи тока на обмотки двигателя через контакты коммутатора. Бесщеточный мотор не имеет токоведущих коммутаторов. Поле внутри бесщеточного двигателя переключается через усилитель, запускаемый коммутирующим устройством, таким как оптический датчик.
В щеточном двигателе постоянного тока используется конфигурация витых проволочных катушек, якоря, действующего как двухполюсный электромагнит. Направленность тока меняется дважды за цикл с помощью коммутатора, механического поворотного переключателя. Это облегчает протекание тока через якорь; таким образом, полюса электромагнита тянут и давят на постоянные магниты вдоль внешней стороны двигателя. Затем коммутатор меняет полярность электромагнита якоря, когда его полюса пересекают полюса постоянных магнитов.
https://youtube.com/watch?v=mv59vNMhQdo
В отличие от бесщеточного двигателя, в качестве внешнего ротора используется постоянный магнит. Кроме того, он использует три фазы катушек и специальный датчик, который отслеживает положение ротора. Когда датчик отслеживает положение ротора, он отправляет опорные сигналы на контроллер. Контроллер, в свою очередь, активирует катушки структурированным образом — одна фаза за другой.
Как устроен бесщеточный двигатель
Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.
В настоящее время существует несколько типов устройств, имеющих различные характеристики.
С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.
Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.
Трехфазные бесколлекторные электродвигатели
Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.
Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.
Они позволяют из постоянного напряжения сделать трехфазные импульсы.
Работа происходит следующим образом:
- На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
- Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
- На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
- Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
- Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
- На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.
И после этого происходит повтор всего цикла.
Особенности дрелей-шуруповертов с бесщеточным двигателем
В ассортименте гипермаркетов Леруа Мерлен широко представлены электроинструменты известных брендов с мировым именем, изготовленные с применением инновационных технологий
Советуем обратить внимание на оснащенные бесщеточным двигателем дрели-шуруповерты, имеющие ряд преимуществ по сравнению с обычными:
- ресурс такого двигателя на треть больше обычного;
- эффективность использования заряда аккумулятора гораздо выше, что обеспечивает большую продолжительность работы без подзарядки;
- мотор способен выдерживать большие нагрузки длительное время практически не нагреваясь;
- более компактные размеры инструмента;
- в процессе эксплуатации нет необходимости замены щеток. Ресурс двигателя ограничивает только срок службы подшипников – других изнашивающихся деталей нет.
В бесщеточных двигателях дрелей-шуруповертов нет коллектора, поскольку вместо роторных обмоток установлены мощные неодимовые магниты. Это обеспечивает большую надежность и компактность, а также исключает потери энергии и искрение. Энергия подается только на обмотки статора, с которых проще осуществим эффективный отвод тепла для дальнейшего рассеивания на корпус инструмента.
Преимущества покупки дрелей-шуруповертов с бесщеточным двигателем в Леруа Мерлен
Купить бесщеточную дрель-шуруповерт от известных производителей по низким ценам можно в ближайшем гипермаркете Леруа Мерлен, которые расположены в Москве и других городах России. Леруа Мерлен имеет прямые поставки качественных товаров известных брендов от поставщиков и производителей, обеспечивая сервисное обслуживание на протяжении гарантийного и постгарантийного срока эксплуатации.
Управляем бесколлекторными двигателями, господа
Привет Хабровчане! Решил я рассказать «всему свету» о проблеме, с которой столкнулся при постройке своего проекта, и как мне удалось её решить.
А речь сегодня пойдет о бесколлекторных двигателях, о регуляторах хода и как ими управлять. Что же такое бесколлекторный двигатель, я не буду долго расписывать (сами можете посмотреть Wiki), а скажу в 2х словах, это 3х фазный двигатель постоянного тока.
И приводится в движение сие чудо благодаря специальному регулятору, который последовательно переключает обмотки с определенной частотой. Управляя частотой переключения обмоток мы управляем скоростью вращения ротора. Ну что же, надеюсь тут все понято, идем дальше.
Первые проблемы Были закуплены 2 комплекта двигатель + регулятор, ждал около месяца, пришли.
Мною овладел приступ безудержного веселья по этому поводу, но, к сожалению, это было ненадолго…. Рассмотрев эти чудеса техники я решил подключить их к источнику питания, и тут то первое разочарование, тихий хлопок (как от КЗ) и тишина, светодиоды не горят, писка нет (а он должен быть), только крутится кулер на регуле, беда… Побежал в ближайший Хобби магазин, и добрый консультант вынес вердикт: сгорел!
Со вторым такая же история, в общем ребята, не повезло, оба бракованные… Ну хоть кошечка порадовалась:
Проблема номер два Теперь настала пора покрутить двигателем. А покрутить нужно не с сервотестера или аппы радиоуправления, а с микроконтроллера, а точнее вот с такой платки:
Перелопатив тонны сайтов, перечитав сотни форумов и ответов на мой вопрос, так как же управлять этим регулятором я слышать только одно: «…чувак да там простой ШИМ…», «… ШИМ тебе в помощь…». Ну ШИМ, так ШИМ. Написал простенькую программу:
Бился 2 дня, пока не наткнулся на случайный пост, о том, что у регулятора есть защита, и он начинает функционировать только при подаче на его вход ШИМ сигнала 1,5 мс. Окей, будет сделано.
Дальше я подцепил обыкновенный резистор через АЦП, и опытным путем подобрал крайние значения ШИМ регулятора. Код получившийся в итоге:
И все заработало. Теперь все крутиться, шумит, пищит и просто радует. P.S. Это код для управления сразу 2мя двигателями.
И последняя проблема, питание… Здесь расскажу немного, а именно, от регулятора идет 3 провода:
Центральная колодка, по порядку Черный — минус, Красный — плюс и Белый — провод управления.
И загвоздка в том, что в отличие от сервоприводов, это не входы под питание, а выходы, т.е. питаемся от них. К чему я это, да к тому, что подключив регулятор как серву, я чуть не спалил порты на ноутбуке, ибо плата в это время была запитана от USB. Но к счастью у моего старичка сработала защита и все обошлось перезагрузкой…
Видео работы:
https://youtube.com/watch?v=8KoC4wf0e-U
Спасибо большое за внимание. Надеюсь мой опыт будет полезен для вас
До скорых встреч.
Источник
Как работает инверторный двигатель?
Инверторные двигатели – это новейшая разработка корейцев. Ранее они использовались в кондиционерах и микроволновках. Но теперь с подачи таких брендов, как Самсунг и LG, стали внедряться в современные устройства для стирки белья, повышая их класс энергоэффективности.
Впервые мотор инверторного типа увидел свет в 2005 году благодаря талантливому учёному из корейского концерна LG.
Суть инверторного движка заключается в том, что его обороты формирует частотный преобразователь, называемый физиками инвертором. Действие последнего направлено на переформатирование переменного тока в постоянный, — на выходе получаем новый переменный ток требуемой частоты. Подобные манипуляции дают возможность точно отрегулировать скорость вращения агрегата и поддерживать частоту оборотов на нужном уровне.
Инверторный движок не имеет щёточек Обычный двигатель
Так чем же отличаются инверторные стиральные машины от обычных? Внутренним строением двигателя, который не имеет трущихся щеток. Ротор таких устройство осуществляет вращение, как и любой другой электрический двигатель – при помощи электромагнитного поля.
Преимущества бесщеточного инструмента на практике
Теоретические преимущества полностью реализуются на практике. Это нужно учитывать, выбирая шуруповерт щеточный или бесщеточный, двигатель какой лучше можно узнать после работы с ним.
Специалисты отмечают, что такой инструмент:
- Гораздо легче и меньше по размеру. Компактность дает возможность работать в сложных местах и носить даже в обычной сумке.
- Мощнее и эффективнее в расходе электричества. Современный принцип работы мотора, основанный на применении электроники, повышает пользовательские характеристики.
- Аккумуляторные модели бесщеточного типа работают на одной зарядке достаточно долго. По сравнению с классическими моторами это на 30 % больше.
- Благодаря незначительному выделению тепла не требуется дополнительного охлаждения и перерывов при работе.
- При работе не издает слишком сильных звуков, не дает резких рывков.
- Нет искр. Это позволяет работать в сложных условиях рядом с топливными баками, газовыми приборами.
- Прост в обслуживании. Не требуется покупать и подбирать щетки.
- Реже ломается, так как отсутствие щетки позволяет работать даже при высоких нагрузках, не боясь засорить двигатель.
Technical details:
Back electromotive force is a phenomenon associated with electromagnetic induction, when specific voltage quantities flow across a conductor, opposing the change in applied current.
Rare-earth magnets are crystalline alloys containing rare-earth elements. Boasting excellent magnetic anisotropy, the magnets can deliver twice as much attraction force as compared to ferrite counterparts, thus creating a stronger magnetic field.
The stator of a brushless DC motor has winding of trapezoidal configuration producing a trapezoidally shaped back-EMF wave. Employing the sinusoidal winding pattern, AC actuators generate sine-shaped EMF waves, accordingly, which enables them to rotate smoothly while minimizing torque ripple. On the downside, the sinusoidal control relies on more complex algorithms than the trapezoidal one. Simultaneously, the trapezoidal configuration in a brushless DC motor is associated with substantial audible and electrical noise.
FMI brushless AC motor (48V)
Асинхронный двигатель
Существуют двух- и трехфазные асинхронные двигатели для стиральных машин. Начиная с 2000-х годов, устройства с двухфазными двигателями практически не выпускают: их заменили более развитыми и компактными технологиями, к которым относятся и трехфазные с частотным регулированием скорости.
В устройстве таких моторов две основные части – неподвижный статор и вызывающий вращение барабана ротор. Скорость вращения может достигать 2800 оборотов в минуту. Самая частая неисправность – ослабление вращающего момента, из-за чего барабан начинает покачиваться по сторонам и не выполняет полных оборотов.
Асинхронный двигатель обладает следующими преимуществами:
- простота конструкции;
- легкость обслуживания (чаще всего необходимо лишь смазывать мотор или менять подшипники);
- низкий уровень шума;
- относительно низкая стоимость.
Недостатками же является большой размер мотора, низкий КПД, сложность при управлении электросхемами. В современных мощных стиральных машинах такие двигатели не используют, встретить их можно в простеньких и недорогих моделях.