Типы магнитов в звукоснимателях

Особенности транспортировки и хранения

Сильное магнитное поле выводит из строя технику, электронику. Чтобы свести к минимуму возможность нанесения урона, соблюдайте технику безопасности при хранении и транспортировке.

Любую технику, как мобильный телефон, GPS-трекер, электронные часы, лучше держать вдалеке. Во время поисковых работ – оставлять в автомобиле, не носить постоянно с собой. После окончания поиска, не подходите к машине с магнитом сразу. Иначе вмятина на корпусе обеспечена.

Дома не храните его рядом с холодильником, телевизором, микроволновой печью. Для безопасной транспортировки и хранения есть специальная немагнитная тара. Это может быть деревянный ящик, специальная сумка и другие. Через них магнитное поле не распространяется вокруг, не влияет на окружающую среду.

Изготовление электромагнитов

Электромагниты производятся с помощью обмотки проволоки вокруг металлического сердечника. Меняя размеры сердечника и длину проволоки меняют мощность поля, количество употребляемого электричества и размеры устройства.

Выплавка

Оператор загружает в электрическую вакуумную печь все компоненты будущего магнита. После проверки оборудования и соответствия количества материала, печь закрывают. С помощью насоса из камеры откачивают весь воздух и запускают процесс плавки.

Воздух из камеры извлекают для того, чтобы предотвратить окисление железа и возможную потерю мощности полей. Расплавленная смесь самостоятельно выливается в форму, а оператор ожидает ее полного остывания. В результате получается брикет, уже имеющий магнитные свойства.

Измельчение

В результате первичного дробления брикета, получают крупные частицы, размером в мелкую щебенку. После вторичного дробления образуется порошок с размером частиц в несколько микронов. Это необходимо, чтобы на следующем этапе, правильно выставить магнитные поля.

Прессование

Порошок загружают в специальный аппарат, где под воздействием магнитного поля и механического давления его прессуют в брикеты, требуемых размеров и форм. Во время воздействия магнитного поля, намагниченные частицы внутри порошка направляются в одну сторону.

Готовые брикеты пакуют в герметичные пакеты и выкачивают изнутри воздух. Это необходимо, чтобы предотвратить окисление металла и потери магнитных свойств.

Спекание

Брикет помещают в специальную печь, из которой удаляют воздух и под воздействием высокой температуры спекают все компоненты в единый магнит. Изделие приобретает высокую прочность и увеличивает мощность магнитных полей.

Завершение производства

Магниты могут дополнительно нарезать, шлифовать и покрывать защитным слоем. Готовые изделия проходят контроль качества, упаковываются и отправляются заказчику.

Технология производства магнитов заключается в смешивании нескольких компонентов и получении изделия, издающего магнитное поле. В зависимости от состава и пропорций, в каждом отдельном случае процесс будет немного отличаться. Готовые изделия будут использоваться в разных сферах нашей жизни, начиная от крупных электродвигателей и заканчивая сувенирами на холодильник.

Видео

https://www.magnetik.com.ua/izgotovlenie-magnitov.html

Какие бывают магниты

Магниты – то, с чем мы сталкиваемся каждый день. От банальных застежек или игрушек до мощных кранов и сложных компьютерных технологий – все это существует благодаря магнитным свойствам определенных металлов. Вещь, отличающаяся собственным магнитным полем, может иметь разные формы и размеры. Состав сплава также отличается. От наличия тех или иных компонентов, меняется мощность, полярность, долговечность, и другие свойства магнитов.

По принципу действия выделяют три подгруппы:

  • Постоянные изготавливаются из разных металлов и минералов. Их главное отличие – способность оставаться в намагниченном состоянии очень долгое время. Размагничивание происходит с разной скоростью, степень зависит от конкретных условий: температуры, целостности. Эти характеристики зависят от способа изготовления и наличия тех или иных компонентов в сплаве.
  • Временные приобретают силу сцепления в определенных условиях. Чаще всего это предметы из мягкого железа, которые помещаются в зону действия сильного магнитного поля. Их магнетизм временный.
  • Электромагниты представляют собой железный сердечник, на который плотно наматываются металлические нити. Когда по проводам идет ток, появляется магнетизм. Его сила и полярность зависят от того, какую величину имеет электрический импульс и в какую сторону он течет.

У каждого из перечисленных типов есть преимущества и недостатки. Применение магнитов определяет то, к какому типу они относятся. Постоянные магниты используются чаще остальных. Они универсальны и встречаются во всех сферах жизни: от быта до промышленных производств.

Виды магнитотерапии

Нам, благодаря техническому прогрессу, доступно несколько видов магнитов, которые могут использоваться в терапевтических целях. Различают магнитотерапию, исходя от типа магнитных полей: переменные и постоянные. Также различают общую магнитотерапию (когда воздействие происходит на весь организм в целом) и местную (воздействие осуществляется локально: на сустав, отдельный орган или область).

Если говорить о техническом оснащении, то сейчас доступно три основных типа аппаратов:

Стационарный. Состоит из столика, магнита и компьютера, в который заложено несколько базовых протоколов лечения. Пациент ложится на стол, а врач-физиотерапевт подбирает необходимый протокол. Также аппарат может быть оснащен дополнительными комплектующими (магнитом для локального, направленного воздействия, поясом, соленоидом, который позволяет создать круговое магнитное поле). Лечение обычно проходит курсами. Один сеанс длится от 15 до 40 минут. Особой подготовки не требуется. Единственная рекомендация – выпить стакан воды до процедуры, чтобы несколько усилить воздействие прибора.
Портативный. Представляет собой прибор, который пациент может без труда носить с собой. Воздействие осуществляется с помощью прикладывания аппарата к пораженному участку тела или ношению его в данной зоне. Наиболее популярным прибором считается «Магофон-01», который создает особые виброакустические колебания и низкочастотное магнитное поле. Данный тип приборов оказывает выраженный обезболивающий, противоотечный и противовоспалительный эффекты.
Магнитные украшения. Пациентам, желающим приобрести магнитные украшения, предоставлен широкий выбор: кольца, браслеты, ожерелья, часы, серьги, броши и т. д. Они часто сделаны элегантно и со вкусом. Естественно, в этих аксессуарах трудно заподозрить лечебное средство. Обычно они изготовлены из меди, металла, ювелирной стали. На их внутренней поверхности помещают активные магниты

Именно последние обладают специальным полем, соответственно, сделаны с особой осторожностью, чтобы помочь, а не навредить человеку.

Разновидности магнитов на холодильник

Существуют разные сферы применения магнитов, но наиболее популярной является изготовление магнитиков на холодильник. Такой аксессуар пользуется особым спросом, т. к. он позволяет повысить узнаваемость компании или служит в качестве сувенира с другого города, страны, интересного места.

Психологические эксперименты, которые сегодня нельзя провести

Доступные на рынке магниты могут отличаться большим разнообразием форм и материалов производства. Их создают на основе винила с магнитными свойствами, керамических материалов, стекла, полимерных заготовок, пластика, гипса и т. д.

Если выделить наиболее известные разновидности, которые пользуются спросом среди широкой аудитории покупателей, то к ним следует отнести.

  1. Плоские модели. Создаются на основе магнитного винила, поверх которого находится картинка с ламинированным покрытием или без него. Они славятся особой мягкостью, гибкостью и устойчивостью к любым воздействиям. Такой тип идеально подходит для создания рекламной продукции.
  2. Закатные. Отличаются красивым дизайном и похожи на значок. Они могут обладать либо прямоугольной, либо закругленной формой.
  3. Смоляные. Создаются на основе эфирных смол и отличаются особой привлекательностью. На рынке продаются мягкие и твердые магниты, которые становятся отличным дополнением к успешному бизнесу.

Виды магнитов

В современном мире их классифицируют по трём основным категориям по типу создаваемого ими магнитного поля:

  • постоянные, состоящие из природного материала, обладающего этими физическими свойствами, например, неодимовые;
  • временные, обладающие этими свойствами во время нахождения в поле действия магнитного поля;
  • электромагниты – это витки провода на сердечнике, создающие электромагнитное поле при прохождении энергии по проводнику.

В свою очередь, наиболее распространённые постоянные магниты подразделяются на пять основных классов, по своему химическому составу:

  • ферромагниты на основе железа и его сплавов с барием и стронцием;
  • неодимовые магниты, имеющие в своём составе редкоземельный металл неодим, в сплаве с железом и бором (Nd-Fe-B, NdFeB, NIB);
  • самариево-кобальтовые сплавы, имеющие сравнимые с неодимовым магнитные характеристики, но в тоже время более широкий температурный диапазон применения (SmCo);
  • сплав Альнико, он же ЮНДК, этот сплав отличается высокой коррозионной устойчивостью и высоким температурным пределом;
  • магнитопласты, представляющие собой смесь магнитного сплава со связующим, это позволяет создать изделия различных форм и размеров.

Сплавы магнитных металлов хрупкие и достаточно дешёвые изделия, обладающие средними качествами. Обычно это сплав оксида железа с ферритами стронция и бария. Температурный диапазон стабильной работы магнита не выше 250-270°C. Технические характеристики:

  • коэрцитивная сила – около 200 кА/м;
  • остаточная индукция – до 0,4 Тесла;
  • средний срок службы – 20-30 лет.

Что такое неодимовые магниты

Это наиболее мощные из постоянных, но в тоже время достаточно хрупкие и нестойкие к коррозии, в основе этих сплавов лежит редкоземельный минерал – неодим. Это самый сильный магнит из постоянных.

Характеристики:

  • коэрцитивная сила – около 1000 кА/м;
  • остаточная индукция – до 1,1 Тесла;
  • средний срок службы – до 50 лет.

Их применение ограничивает только низкий предел температурного диапазона, для наиболее термостойких марок неодимового магнита это 140°C, в то время как менее стойкие разрушаются при температуре свыше 80 градусов.

Самариевокобальтовые сплавы

Обладающие высокими техническими характеристиками, но в тоже время очень дорогие сплавы.

Характеристики:

  • коэрцитивная сила – около 700 кА/м;
  • остаточная индукция – до 0,8-1,0 Тесла;
  • средний срок службы – 15-20 лет.

Они используются для сложных условий работы: высокие температуры, агрессивные среды и большая нагрузка. Из-за сравнительно высокой стоимости их применение несколько ограничено.

Альнико

Порошковый сплав из кобальта (37-40%) с добавлением алюминия и никеля также обладает хорошими эксплуатационными характеристиками, кроме того способностью сохранять свои магнитные свойства при температурах до 550°C. Их технические характеристики ниже, чем у ферромагнитных сплавов и составляют:

  • коэрцитивная сила – около 50 кА/м;
  • остаточная индукция – до 0,7 Тесла;
  • средний срок службы – 10-20 лет.

Но, несмотря на это, именно этот сплав наиболее интересен для применения в научной сфере. Кроме того, добавление в сплав титана и ниобия способствует повышению коэрцетивной силы сплава до 145-150 кА/м.

Магнитопласты

Используются в основном в быту для изготовления магнитных открыток, календарей и прочих мелочей, характеристики магнитного поля незначительно падают из-за меньшей концентрации магнитного состава.

Это основные типы постоянных магнитов. Электромагнит по принципу действия и применению несколько отличается от таких сплавов.

Интересно.
Неодимовые магниты используются практически повсеместно, в том числе и в дизайне для создания парящих конструкций, и в культуре для этих же целей.

Примеры силовых линий

Наглядное представление о силовых линиях магнитного поля можно получить, если на плоский стеклянный лист, сквозь который пропущен проводник с током, равномерно (в один слой) разложить мелкие железные опилки или опилки из другого ферромагнетика (никеля, кобальта и т.п.). Включение тока приводит к появлению магнитного поля, в котором опилки намагничиваются, то есть становятся “магнитными стрелками” и выстраиваются вдоль силовых линий поля .

Рис. 1. Демонстрация силовых линий магнитного поля от прямого провода с током с помощью железных опилок.

Видно, что силовые линии представляют собой концентрические окружности, которые расположены в плоскости перпендикулярной проводнику. Центры всех окружности лежат на оси проводника.

Следующий пример — силовые линии магнитного поля, которое создает обычный полосовой постоянный магнит.

Рис. 2. Демонстрация силовых линий магнитного поля от полосового магнита с помощью железных опилок.

Направлением вектора магнитной индукции принято считать направление от южного полюса S к северному полюсу N. Хорошо видно, что силовые линии имеют максимальную концентрацию вблизи полюсов N и S. Направления силовых линий магнитного поля имеют сложную геометрическую форму, но все линии непрерывны и замкнуты. Внутри магнита плотность (густота) силовых линий максимальна, а поле однородно. Магнитное поле является однородным, когда магнитная индукция постоянна, то есть = const.

Еще один пример — это соленоид, то есть катушка, изготовленная с помощью намотки гибкого проводника, сохраняющего форму (например, из медной проволоки).

Рис. 3. Демонстрация силовых линий магнитного поля от соленоида.

Оказывается картина силовых линий соленоида очень похожа на силовые линии, которые создаются постоянным полосовым магнитом. Видно, что внутри катушки магнитное поле близко к однородному.

Для определения направления вектора надо пользоваться “правилом буравчика”, которое звучит так: вектор направлен в ту сторону, куда перемещалась бы рукоятка буравчика (с правой резьбой) если ввинчивать его по направлению тока в проводе (или в рамке).

Порядок применения

Чтобы правильно пользоваться поисковым магнитом, нужно понимать особенность материалов, из которых он устроен. Сплав из неодима, бора и железа выдерживает вес, в сотню раз превышающий собственный. Использование магнита предельно простое. Достаточно поднести прибор близко к металлическому предмету, и он сразу же сработает. В зависимости от местности, находки могут быть ценными, большими, а иногда и опасными.

Веревка

Определитесь, в каких условиях прибор будет применяться. Как правило, это высохшие колодцы или озера, реки. Сперва стоит подобрать специальную веревку. При выборе смотрите на разрывное усилие. Эта характеристика показывает, на какой вес рассчитан трос.

Разрывное усилие веревки должно равняться как минимум мощности магнита, либо превышать. Например, для устройства номинальной силой 200кг подойдет трос с аналогичным весовым ограничением. Брать больше можно и даже нужно в некоторых случаях. Если вы планируете использовать шест, то его вес стоит прибавить к номинальной силе магнита. Также находки чаще придется вытаскивать из ила, водорослей или песка. Вода создает усилие на предмет, поэтому плотная веревка однозначно понадобится. Рекомендуется брать с запасом.

Для поиска на дне водоемов есть прорезиненные тросики, которые не портятся от влияния влажной среды.

Шест

Отдельное интересное приспособление, которое пригодится кладоискателям, действующим на болотной местности. Сам магнит обладает небольшим весом, поэтому не проникает через плотный ил. Магнит крепится к концу шеста, затем опускается вглубь. Так можно найти старинные сокровища, затаившиеся на самом дне.

Из чего состоит магнит. Использование магнитов

Жёсткие диски записывают данные на тонких магнитных покрытиях.

  • Магнитные носители информации: VHS кассеты содержат катушки из магнитной ленты . Видео и звуковая информация кодируется на магнитном покрытии на ленте. Также в компьютерных дискетах и жёстких дисках запись данных происходит на тонком магнитном покрытии. Однако носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы. Магниты в жёстких дисках используются в ходовом и позиционирующем электродвигателях.
  • Кредитные , дебетовые и ATM карты — все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи с их счетами.
  • Обычные телевизоры и компьютерные мониторы : телевизоры и компьютерные мониторы, содержащие электронно-лучевую трубку используют электромагнит для управления пучком электронов и формирования изображения на экране. Плазменные панели и ЖК-дисплеи используют другие технологии.
  • Громкоговорители и микрофоны : большинство громкоговорителей используют постоянный магнит и токовую катушку для преобразования электрической энергии (сигнала) в механическую энергию (движение, которое создает звук). Обмотка намотана на катушку , прикрепляется к диффузору и по ней протекает переменный ток, который взаимодействует с полем постоянного магнита.
  • Другой пример использования постоянных магнитов в звукотехнике — в головке звукоснимателя электрофона и в простейших магнитофонах в качестве экономичной стирающей головки.

Как и из чего делают постоянные магниты

Магнетиты имеют довольно слабые магнитные свойства. Промышленным способом налажено массовое производство искусственных магнитов различных размеров. Исходными материалами для этого служат сплавы на основе металлов: железа Fe, никеля Ni, кобальта Co, неодима Nd, самария Sm. Заготовки из этих сплавов получают литьем, прессованием или спеканием. Затем они помещаются в очень сильное однородное магнитное поле, создаваемое электромагнитами. Во время воздействия магнитного поля, намагниченные частицы направляются в одну сторону. Так выравнивается полярность будущего магнита. В результате заготовки сильно намагничиваются и становятся самостоятельными постоянными магнитами.

В последнее время большую популярность получили полимерные постоянные магниты (магнитопласты). Их изготавливают из смеси магнитного порошка и полимерной (пластиковой) эластичной добавки, например, резины. Магнитные свойства магнитопластов невысоки, но их вполне достаточно для изготовления различных полезных приспособлений, например, магнитов на холодильник, пластиковых карт, демонстрационных и учебных досок.

Магнит в Средние века

Использовать магнит как указатель сторон света догадались в Китае, но никто не проводил теоретических исследований на эту тему.

А вот научные труды европейских средневековых учёных не обошли магнит стороной. В 1260 году Марко Поло привёз магнит из Китая в Европу – и понеслось. Пётр Перегрин в 1296 году издал «Книгу о магните», где было описано такое свойство магнита, как полярность. Пётр установил, что полюса магнита могут притягиваться и отталкиваться.

В 1300 году Иоанн Жира создал первый компас, облегчив жизнь путешественникам и мореплавателям. Впрочем за честь считаться изобретателям компаса борется несколько учёных. Например, итальянцы свято уверены, что первым изобрёл компас их соотечественник Флавио Джойя.

В 1600 труд «О магните, магнитных телах и о большом магните – Земле. Новая физиология, доказанная множеством аргументов и опытов» английского врача Уильяма Гильберта расширил границы знаний об этом предмете. Стало известно, что нагревание способно ослабить магнит, а железная арматура может усилить полюса. Так же оказалось, что сама Земля является огромным магнитом.

В 1701 астроном Э.Галлей опубликовал свои труды по изучению геомагнитных полей. Вскоре была доказана связь между полярным сиянием и магнитными бурями.

Кстати, любопытно, откуда взялось название «магнитная буря». Оказывается, бывают дни, когда стрелка компаса перестаёт указывать на север, а начинает беспорядочно кружиться. Это может продолжаться несколько часов или даже несколько суток. Поскольку первыми данный феномен обнаружили моряки, то и окрестили явление красиво – магнитной бурей.

Древнекитайский компас

Памятник Флавио Джойя в Амальфи

Титульный лист De Magnete, Magneticisque Corporibus, et de magno magnete tellure; Physiogia nova, plurimis et arguementis et experimentis demonstrata, William Gilbert 1600

Тонкости изготовления своими руками

Разобравшись с принципом действия магнитного поля и основными технологическими процессами по производству магнитов, у многих энтузиастов может возникнуть желание создать такое изделие в домашних условиях. Естественно, создать сверхпрочный магнит из подручных средств не получится, но изготовить интересную самоделку, сохраняющую свойства притягивания и отталкивая отдельных предметов, вполне реально. И в качестве такой самоделки является магнит на холодильник.

Наиболее простым и примитивным способом изготовления таких аксессуаров считается использование магнитного винила

Его можно купить в соответствующем магазине, обратив внимание на модель с толщиной 0,4 мм, а также глянцевым или матовым покрытием для струйного принтера. Дальше нужно нанести на исходный материал подходящую картинку, распечатав ее на принтере

Несмотря на свою простоту, метод отличается многими недостатками:

  1. Покупка магнитного винила — удовольствие не из дешевых. При этом небольшая толщина изделия заметно снижает показатели силы притяжения. Поэтому такие магнитики подходят только для частного использования, ведь вряд ли кто-то захочет купить их.
  2. Качество конечной продукции находится на низком уровне, а само изделие не может похвастаться большим сроком службы. И причиной таких недостатков может стать не сам виниловый магнит, а наличие цветного отпечатка от принтера.

Оба способа достаточно просты для реализации в домашних условиях и не требуют специфических навыков. Все, что может понадобиться для предстоящей работы, это:

Спутники-шпионы: японский «Когаку 5» вышел на орбиту

  1. Персональный компьютер или ноутбук с предустановленным графическим редактором. Желательно использовать фотошоп.
  2. Принтер струйного формата, поддерживающий функции цветной печати. Желательно отдавать предпочтение дорогим моделям, т. к. работают они гораздо быстрее и качественнее.
  3. Прибор для резки. Являясь мягким резиноподобным материалом, винил легко режется с помощью обычных ножниц, но чтобы обеспечить ровные края и правильную обрезку, лучше приобрести профессиональные резаки.

Немного истории

Обыденные для современного человека вещи могут отличаться очень сложной историей. И магнит — не исключение. Особое поле, которое создается разными материалами, вызывало у мудрецов прошлых эпох не только восторг, но и удивление. При этом с таким явлением люди столкнулись очень давно. Но активное развитие науки о магнитном поле началось относительно недавно, а в хозяйственных целях его применили буквально пару десятков лет назад.

Существует масса исторических фактов, подчеркивающих многовековую историю специфического поля с уникальными притягивающими или отталкивающими свойствами. Первое достоверное упоминание уходит своими корнями в Древнюю Грецию, где когда-то существовала область Магнисия. Именно на территории этого географического региона удалось найти залежи вещества, формирующего такое поле. Вскоре породу наименовали «камнем из Магнисии».

Кроме реальной физической возможности притягивать железные предметы, такие камни наделяли и мистическим значением. Их считали подарком богов, способным отпугивать злых духов, исцелять от смертельных заболеваний и приносить в дом удачу. Тем не менее, вскоре люди сумели изобрести первый прототип компаса, придав предмету форму иглы, которая всегда указывает на север.

Большое количество упоминаний о чудо-поле присутствует в китайских летописях. Там камням приписывали чудодейственные свойства, а также посвящали легенды. К примеру, есть легенда о мистических воротах, через которые не могли пройти люди с мечами. Ведущие ученые современности придерживаются мнения, что эти ворота были созданы из породы, притягивающей металлические предметы.

Как делают магнит. Как изготовить постоянный магнит

Магниты необходимы для производства приборов. Без них невозможно изготовить, например, жесткий диск компьютера или акустические системы. Естественных магнитов мало, поэтому полностью удовлетворить потребности человечества могут искусственно созданные магниты.

Вам понадобится

Отвертка, промасленная бумага, плавкий предохранитель, выключатель, медная проволока.

Инструкция

1

Изготовить простейшим способом магнит можно всего лишь проведя несколько раз в одном направлении по намагничиваемому предмету сильным постоянным магнитом. Но такой магнит быстро потеряет свои свойства , будет иметь слабое магнитное поле и может использоваться для несложных действий, например, достать иголку из щели в полу, или притянуть болтики.

2

Намагничивание с помощью батарейки . Электромагнит придаст магнитные свойства металлическому предмету. Рассмотрим на примере отвертки. На отвертку, обернутую изолятором, намотайте 200-300 витков проволоки, которую используют для изготовления трансформаторов и подключите ее к батарейке или аккумулятору на 5- 12 вольт . Электромагнитное поле намагнитит отвертку.

3

Сделать более сильный постоянный магнит можно следующим способом — с помощью индукционной катушки. Заготовка для магнита должна быть такого размера, чтобы полностью поместиться внутри катушки. Выполните действия , описанные выше, но витков сделайте примерно в два раза больше.

4

Если вы будете использовать ток электросети — не забудьте поставить плавкий предохранитель. Затем последовательно соедините катушку с предохранителем. При включении в сеть предохранитель может сгореть, но сильное электромагнитное поле успеет зарядить металл , находящийся внутри катушки.

Обратите внимание

Если вы решили сделать постоянный магнит в домашних условиях, то не забывайте о правилах безопасности. Нужно быть предельно осторожным и помнить, что вы работаете с высоким напряжением, а оно опасно для жизни. Также может возникнуть пожар из-за короткого замыкания. Будьте очень внимательны!

Полезный совет

Магнит может потерять свои свойства при нагревании свыше 50 градусов Цельсия, а так же в случае удара или падения.

Изготовление магнитов


Электромагнит принцип работы Электромагниты производятся с помощью обмотки проволоки вокруг металлического сердечника. Меняя размеры сердечника и длину проволоки меняют мощность поля, количество употребляемого электричества и размеры устройства.

Выбор компонентов

Постоянные и временные магниты производятся с разной силой полей и устойчивостью к окружающим воздействиям. Перед началом производства, заказчик определяет состав и форму будущих изделий в зависимости от места применения и дороговизны производства. С точностью до грамма подбираются все компоненты и отправляются на первый этап производства.

Выплавка


Электрическая вакуумная печь Оператор загружает в электрическую вакуумную печь все компоненты будущего магнита. После проверки оборудования и соответствия количества материала, печь закрывают. С помощью насоса из камеры откачивают весь воздух и запускают процесс плавки. Воздух из камеры извлекают для того, чтобы предотвратить окисление железа и возможную потерю мощности полей. Расплавленная смесь самостоятельно выливается в форму, а оператор ожидает ее полного остывания. В результате получается брикет, уже имеющий магнитные свойства.

Измельчение

Однородный сплав в специальных дробилках измельчают в два этапа. В результате первичного дробления брикета, получают крупные частицы, размером в мелкую щебенку. После вторичного дробления образуется порошок с размером частиц в несколько микронов. Это необходимо, чтобы на следующем этапе, правильно выставить магнитные поля.

Прессование

Порошок загружают в специальный аппарат, где под воздействием магнитного поля и механического давления его прессуют в брикеты, требуемых размеров и форм. Во время воздействия магнитного поля, намагниченные частицы внутри порошка направляются в одну сторону. В результате выравнивается полярность будущего магнита. Готовые брикеты пакуют в герметичные пакеты и выкачивают изнутри воздух. Это необходимо, чтобы предотвратить окисление металла и потери магнитных свойств.

Интересно: Откуда известно, что пластик разлагается 500 лет?

Спекание

Брикет помещают в специальную печь, из которой удаляют воздух и под воздействием высокой температуры спекают все компоненты в единый магнит. Изделие приобретает высокую прочность и увеличивает мощность магнитных полей.

Завершение производства


Готовые магниты Магниты могут дополнительно нарезать, шлифовать и покрывать защитным слоем. Готовые изделия проходят контроль качества, упаковываются и отправляются заказчику.

Интересный факт: первая шахта по выработке магнитной руды была построена на холмах магнезии в Малой Азии. С ее недр было выработано множество тонн руды, которую использовали для производства компасов и других уникальных инструментов.

Технология производства магнитов заключается в смешивании нескольких компонентов и получении изделия, издающего магнитное поле. В зависимости от состава и пропорций, в каждом отдельном случае процесс будет немного отличаться. Готовые изделия будут использоваться в разных сферах нашей жизни, начиная от крупных электродвигателей и заканчивая сувенирами на холодильник.