Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
Конструкция и детали
Все детали УМЗЧ и блока питания размещены на одной плате. Исключение составляют транзисторы VT3, VТ4, VТ6, VТ8 УМЗЧ, установленные на общем теплоотводе с площадью рассеиваемой поверхности 1200 см2 и транзисторы VТ7, VТ8 БП, размещенные на отдельных теплоотводах с площадью рассеивающей поверхности 300 см2 каждый.
Катушки L1, L2 блока питания (рис. 3) и L1 усилителя мощности содержат 30…40 витков провода ПЭВ-1 диаметром 1,0 мм, намотанного на корпусе резистора С5-5 или МЛТ-2. Резисторы R7, R12 блока питания представляют собой отрезок медного провода ПЭЛ, ПЭВ-1 или ПЭЛШО диаметром 0,33 мм и длиной 150 мм, намотанного на корпусе резистора МЛТ-1.
Трансформатор питания выполнен на тороидальном магнитопроводе из электротехнической стали Э320, толщиной 0,35 мм, ширина ленты 40 мм, внутренний диаметр магнитопровода 80 мм, наружный — 130 мм. Сетевая обмотка содержит 700 витков провода ПЭЛШО диаметром 0,47 мм, вторичная — 2×130 витков провода ПЭЛШО диаметром 1,2 мм.
Вместо ОУ К544УД2Б можно использовать К544УД2А, К140УД11 или К574УД1. Каждый из транзисторов КТ825Г можно заменить составными КТ814Г и КТ818А, а транзистор КТ827А — составными КТ815Г и КТ819Г (что очень нежелательно). Диоды VD3…VD6 УМЗЧ можно заменить любыми высокочастотными кремниевыми диодами, VD7, VD8 — любыми кремниевыми с максимальным прямым током не менее 100 мА.
Вместо стабилитронов КС515А можно использовать соединенные последовательно стабилитроны Д814А (Б, В, Г, Д) и КС512А.
Инвертирующий усилитель с однополярным питанием
В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:
Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?
То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.
Что имеем в итоге на виртуальном осциллографе?
Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.
В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!
Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:
Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.
В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :
Проверяем симуляцию, все ок!
Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.
То есть получилось что-то типа вот этого:
Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из , с помощью которого можно отсекать лишние частоты.
1 Что это за противопожарные системы?
Стационарная система (установка) пожаротушения — это совокупность технических средств, смонтированных непосредственно на защищаемом объекте и предназначенных для тушения пожара с помощью различных огнетушащих веществ (ОТВ).
Эффективное порошковое пожаротушение. Нюансы установки и обслуживания модулей
1.1
Как выглядят?
На сегодняшний день наиболее распространёнными являются стационарные установки пожаротушения (УПТ), использующие в качестве ОТВ воду. Их внешний вид не сильно изменился за последние 100 лет.
Справка. Первая автоматическая водяная стационарная УПТ была запатентована Дж. Кэри в 1806 г, а в 1902 г. Ф. Гриннелем было разработано устройство, ставшее прообразом запорно-пускового механизма в современных спринклерных установках.
Водяные УПТ представляют собой систему водопроводов:
- из вертикальных и горизонтальных пожарных сухотруб с соединительными головками, позволяющих подать воду на любой уровень зданий или к труднодоступным помещениям;
- из перфорированных труб или с установленными на них головками-оросителями для создания противопожарных завес или локального пожаротушения.
Очень схожи по внешнему виду с водяными стационарными УПТ пенные, но у них вместо оросителей используются раструбы. Газовые, порошковые и азрозольные стационарные станции пожарортушения, в зависимости от назначения, могут выглядеть очень разнообразно, но все они выполняются из негорючих материалов и имеют:
- разветвлённую систему;
- распыляющие механизмы, устанавливаемые во всех пожароопасных помещениях.
Какие бывают виды систем пожаротушения? Классификация установок по способу тушения и иных
1.2
Их назначение
Основное предназначение УПТ — это ликвидация пожара без участия людей в отдельном помещении, здании или сооружении на начальной его стадии до того, как:
- неконтролируемое горение достигнет критических значений, и огнестойкость конструкций не выдержит его воздействия;
- произойдёт разрушение технологических установок;
- будет нанесён ущерб защищаемому имуществу и здоровью людей.
Однако в большинстве случаев при возникновения пожароопасной обстановки в местах, труднодоступных для подачи ОТВ, стационарные системы пожаротушения могут обеспечить лишь локализацию пожара.
Важно! В данных ситуациях предполагается участие добровольных формирований до прибытия оперативных подразделений пожарной охраны. Классификация систем пожаротушения: популярные виды
Классификация систем пожаротушения: популярные виды
Основы работы источника тока с двумя операционными усилителями
Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.
Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice
Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.
Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).
В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.
Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:
Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения
Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1
Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.
\(V_{вых,U1}\approx \left(R_{нагр}+R1\right)I_{вых}\)
Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.
Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.
Двухкаскадные УНЧ с непосредственной связью между каскадами
Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.
Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).
Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.
Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.
Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.
В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.
Рис. 14. Двухкаскадный УНЧ с полевым транзистором.
Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).
Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.
Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.
Как питаемся схема
От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.
На клеммы Х3 и Х4 подключается питание 6 В.
Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.
И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.
Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.
К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.
Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.
Токовый повторитель
Токовая буферная схема с усилением 1 (т.е. входные и выходные токи одинаковы) называется токовым повторителем. Это означает, что схема повторителя тока не обеспечивает какого-либо усиления тока для входного сигнала.
Вы можете быть удивлены, почему схема токового повторителя используется в реальности, поскольку входной и выходной токи от токового повторителя одинаковы. Причина в том, что повторитель тока не используется для увеличения выходного тока.
Но он используется для изоляции входных и выходных линий, обеспечивая при этом одинаковое количество тока, поступающего на вход и выход. Это причина, по которой схемы токовых повторителей также называются изоляционными буферами.
digitrode.ru
Отличия реальных ОУ от идеального[править | править код]
Параметры ОУ, характеризующие его неидеальность, можно разбить на группы:
Параметры по постоянному токуправить | править код
- Ограниченное усиление: коэффициент Gopenloop не бесконечен (тпичное значение 105 ÷ 106 на постоянном токе). Этот эффект заметно проявляется только в случаях, когда коэффициент передачи каскада с ОУ отличается от парметра Gopenloop в небольшое число раз (усиление каскада отличается от Gopenloop на 1÷2 порядка или еще меньше).
- Ненулевой входной ток (или, что почти то же самое, ограниченное входное сопротивление): типичные значения входного тока составляют 10-9 ÷ 10-12 А. Это накладывает ограничения на максимальное значение сопротивлений в цепи обратной связи, а также на возможности с источником сигнала. Некоторые ОУ имеют на входе дополнительные цепи для защиты входа от чрезмерного напряжения — эти цепи могут значительно ухудшить входное сопротивление. Поэтому некоторые ОУ выпускаются в защищенной и незащищенной версии.
- Ненулевое . Данное ограничение не имеет большого значения, так как наличие обратной связи эффективно уменьшает выходное сопротивление каскада на ОУ (практически до сколь угодно малых значений).
- Ненулевое напряжение смещения: требование о равенстве входных напряжений в активном состоянии для реальных ОУ выполняется не совсем точно — ОУ стремится поддерживать между своими входами не точно ноль вольт, а некоторое небольшое напряжение (напряжение смещения). Другими словами, реальный ОУ ведет себя как идеальный ОУ, у которого внутри последовательно с одним из входов включен генератор напряжения с ЭДС Uсм. Напряжение смещения — очень важный параметр, он ограничивает точность ОУ, например, при сравнении двух напряжений. Типичные значения Uсм составляют 10-3 ÷ 10-6 В.
- Ненулевое усиление синфазного сигнала. Идеальный ОУ усиливает только разницу входных напряжений, сами же напряжения значения не имеют. В реальных ОУ значение входного синфазного напряжения оказывает некоторое влияние на выходное напряжение. Данный эффект определяется параметром коэффициент ослабления синфазного сигнала (КОСС, англ. common-mode rejection ratio, CMRR), который показывает, во сколько раз приращение напряжения на выходе меньше, чем вызвавшее его приращение синфазного напряжения на входе ОУ. Типичные значения: 104 ÷ 106.
Параметры по переменному токуправить | править код
- Ограниченная полоса пропускания. Любой усилитель имеет конечную полосу пропускания, но фактор полосы особенно значим для ОУ, поскольку они имеют внутреннюю частотную коррекцию для увеличения запаса по фазе.
- Ненулевая входная ёмкость. Образует паразитный фильтр низких частот.
Нелинейные эффекты:править | править код
- Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).
- Ограниченая скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних емкостей.
Ограничения, обусловленные питаниемправить | править код
- Ограниченный выходной ток. Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока — типичное значение максимального тока 25 мА. Защита предотвращает перегрев и выход ОУ из строя.
- Ограниченная выходная мощность. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 2 кОм.
Ближайшие колледжи
Уфимский художественно-гуманитарный колледж 450112, Республика Башкортостан, г.Уфа, улица Рыбакова, 6А
История колледжа началась в 1974 году. После окончания колледжа, овладев профессией, выпускники реализуют себя в творческой деятельности в художественных и ювелирных мастерских, салонах, на производстве, в индивидуально-предпринимательской сфере, а также продолжают учёбу по профилю в ССУЗах и Колледжах, работают руководителями кружков и студий декоративно-прикладного искусства.
2.81 км
Башкирский колледж сварочно-монтажного и промышленного производства Ранее (Профессиональное училище №13) 450112, Республика Башкортостан, г. Уфа, ул. Спартака, 13
Колледж ведет свою историю с 22 ноября 1946 года.
3.29 км
Федеральное казенное образовательное учреждение № 138 ФСИН 450049, Башкортостан республика, Уфа, улица Новоженова, 86А
ФКП образовательное учреждение №138
3.88 км
Октябрьский коммунально-строительный колледж 452616, Башкортостан республика, Октябрьский, улица Академика Королева, 1
Распоряжением Правительства РБ от 24 февраля 2014г № 123-р ГБОУ СПО `Октябрьский коммунально-строительный техникум` и ГБОУ НПО пофессиональное училище № 4 реорганизованы путем присоединения училища к техникуму с передачей прав, обязанностей и имущества и сохранением целей деятельности в Государственное бюджетное профессиональное образовательное учреждение Октябрьский коммунально-строительный колледж (ГБПОУ ОКСК). Условия осуществления образовательной деятельности соответствуют лицензионным требованиям. Техникум имеет Государственную аккредитацию 02А03 №0000021 от 18.02.2015 г рег. №1399.)
4.90 км
Уфимский художественно-промышленный колледж 450104, Республика Башкортостан, г. Уфа, Уфимское шоссе 22
Уфимский художественно-промышленный колледж — учебный комплекс с современными аудиториями и учебно-производственными мастерскими, библиотекой, читальным, актовым и спортивным залами, столовой, музеем художественных ремесел. Созданы условия для профессионального роста и формирования мотивации к инновационному развитию и стремлению к самосовершенствованию. Организованы курсы профессиональной подготовки и повышения квалификации населения, в том числе граждан с ограниченными возможностями здоровья.
5.11 км
Больше? Ещё 20 ближайших колледжей
Способы борьбы с током смещения
В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:
1) Ставить в цепь обратной связи резистор малого номинала.
На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.
2) Ввести в схему компенсирующий резистор
В этом случае он будет определяться по формуле:
Если все-таки выходной сигнал соответствует вашим ожиданиям и без RК , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?
3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.
Типы усилителей
Усилители можно разделить на три группы:
Усилитель напряжения
Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:
KU – это коэффициент усиления по напряжению
Uвых – напряжение на выходе усилителя, В
Uвх – напряжение на входе усилителя, В
Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .
В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.
Разбор схемы
Это моно-усилитель мощности звуковой частоты.
Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).
В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.
Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.
Что такое каскад
Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.
Аэрозольные установки
Установки аэрозольного типа состоят из твердого аэрозолеобразующего, огнетушащего вещества и пиротехнического инициатора. Частицы аэрозоля имеют размер 5-10 микрон и способны находиться в воздухе до 30 мин при этом огнетушащая концентрация в закрытом (но не герметичном) помещении сохраняется на протяжении 15 мин. после окончания распыления. Это предотвращает повторное возгорание.
Преимущества:
- Универсальность – применяются для тушения пожаров всех категорий;
- Эффективность;
- Безвредность для предметов интерьера и материальных ценностей, легко удаляется;
- Небольшая стоимость установки и простота монтажа.
Недостатки:
Устройство довольно чувствительно к правильности эксплуатации, возможны частые ложные срабатывания.
Это интересно: Огнетушители: инструкция по применению и использованию
Просто, но без «защиты от дурака»
При такой надежной и понятной схеме всегда существует риск самоуспокоения. Вот некоторые потенциальные проблемы, которые вы должны иметь в виду:
- Это очевидно, но убедитесь, что биполярный транзистор может справиться с вашим током нагрузки. Например, транзистор 2N2222, который вы найдете среди своих запчастей, вероятно, рассчитан только на постоянный ток коллектора 800 мА.
- Это не так очевидно: не превышаете ли вы максимальную рассеиваемую мощность транзистора? Эта проблема особенно неуловима, потому что это то, что вы можете не заметить в симуляции – например, симуляции, выполненные в этой статье, как-то не предупредили нас о том, что мы сжигали транзистор 2SCR293P. Максимальная рассеиваемая мощность для этого компонента с «каждым выводом, установленным на опорной земле» (я не совсем уверен, что это значит) составляет 0,5 Вт. В нашей схеме, если Vвых = 3 В, ток через нагрузку будет равен (3 В) / (5 Ом) = 600 мА, а напряжение коллектор-эмиттер на транзисторе составляет 12 В — 3 В = 9 В. Таким образом, рассеиваемая мощность составляет около (600 мА) × (9 В) = 5,4 Вт. Хотя ток коллектора находится в пределах допустимого диапазона, мы превысили максимальную мощность в 10 раз! Вы можете исправить это, используя более низкое напряжение питания, если это возможно, и после этого вам нужно выбрать более мощный транзистор.
- Когда биполярный транзистор работает в активной области, ток, текущий через базу, приблизительно равен току нагрузки, деленному на коэффициент бета, иначе известный как hFE или коэффициент усиления по току. Таким образом, операционный усилитель все еще должен подавать некоторый ток, и вы можете столкнуться с проблемами, если у вас будет высокий ток нагрузки в сочетании с относительно слабым выходным каскадом операционного усилителя. Например, если ваш ток нагрузки составляет 2500 мА, и вы используете транзистор с hFE = 100, вам потребуется ток базы около 25 мА; а некоторые операционные усилители не способны его обеспечить.
- Имейте в виду, что выходное напряжение операционного усилителя примерно на 0,7–0,9 В выше напряжения нагрузки. Это необходимо учитывать при выборе напряжения питания операционного усилителя. Например, допустим, вам необходимо напряжение нагрузки в диапазоне от 0 до 4 В. Подходит ли вам напряжение питания 5 В? Возможно, нет: напряжение базы может доходить до 4,9 В; и если размах выходного сигнала операционного усилителя ограничен положительной шиной минус 0,8 В, у вас будут проблемы.
- Биполярный транзистор начинает входить в режим насыщения, когда напряжение базы превышает напряжение коллектора примерно на 0,5 В, а поскольку напряжение базы примерно на 0,7–0,9 В выше напряжения нагрузки, напряжение коллектора биполярного транзистора (которое в этой схеме такое же, как напряжение питания) должно быть как минимум на (0,9 В – 0,5 В) = 0,4 В выше, чем максимально необходимое напряжение нагрузки. (Эти числа приблизительны и будут варьироваться в зависимости от условий эксплуатации и электрических характеристик транзистора.) Насыщение биполярного транзистора приведет к выравниванию напряжения нагрузки, прежде чем оно достигнет напряжения питания транзистора.
Автоматический перевод УПТ
Автоматический перевод или «машинный перевод» — процесс перевода текста на язык пользователя при помощи специальной компьютерной программы. В Nemo.travel используется онлайн сервис Яндекс.Переводчик. Данный сервис не является инструментом точного перевода, но осуществляя перевод отдельных слов или фраз, как правило, позволяет пользователю понять основной смысл текста.
Работа Яндекс Переводчика |
Автоматический перевод текста тарифных правил (УПТ) доступен во всплывающем окне на форме бронирования авиабилетов. Текст отображается в том виде, как он получен из ГРС, и имеется кнопка «перевести», которая запускает сервис Яндекс.Переводчик.
Внимание! Чтобы кнопка отобразилась во всплывающем окне, необходимо задать API YANDEX TRANSLATOR ключ в разделе Управление сайтом → Настройка внешнего вида.
Внимание! Система Nemo.travel не отвечает за точность перевода, предоставленного сервисом Яндекс.Переводчик.
Страница просмотра УПТ с переводом с помощью сервиса Яндекс Переводчик |
Виды усилителей по полосе пропускания
По ширине полосы пропускания усилители делятся на:
Усилители низкой частоты
Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.
Широкополосные усилители
Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.
Узкополосные усилители
Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.
Усилители постоянного тока
Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).
Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.
Источник
Проблема напряжения смещения нуля на входе
Школьные учебники сильны в описании идеального мира. Все неизвестные в уравнении могут быть найдены, на каждый вопрос найдется ответ. В реальном же мире, чтобы заставить работать аналоговую схему, необходимо провести не один час в лаборатории, в то время как простое и быстрое решение проблемы может находиться совсем в другой плоскости… . Среди множества постоянных ошибок, возникающих при использовании ИУ, для усиления сигнала, эффект входного смещения (Uсм) наиболее критичен. Фактически, любая постоянная ошибка может быть смоделирована в терминах Uсм: 1. Ксс (коэффициент подавления синфазного сигнала- DC CMRR) может быть представлен как изменение напряжения смещения при подаче синфазного сигнала; 2. Кип (коэффициент подавления изменения напряжения питания- DC PSRR) — может быть представлен как изменение напряжения смещения при изменении напряжения питания. Даже если Uсм тарировано при изготовлении усилителя, его дрейф (температурный и временной) может быть большей проблемой, чем его начальный уровень сам по себе. Такой дрейф лучше всего компенсировать при помощи некоторых активных схем, интегрированных в микросхему. Один из наиболее важных источников динамической ошибки в схемах (кроме внешних факторов) – это шум, зависящий от схемных решений производителя и особенностей технологического процесса. Поскольку в основном сигнал датчика усиливается блоком с высоким коэффициентом усиления, величина входного шума увеличивается соответственно. В основном шум представлен двумя формами: розовый шум (иначе называемый шум 1/f или фликкер-шум) и белый шум. Розовый шум наиболее критичен на низких частотах (