Где -амплитудное значение периодической составляющей сверхпереходного тока трехфазного металлического к3, ка;

Содержание

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего. Оборудование и установки

Постоянная времени Та Ударный коэффициент Ку
Турбогенераторы 0,1-0,3 1,95
Блок, состоящий из генератора и трансформатора 0,04 1,8
Высоковольтная ЛЭП 0,01 1,3
Короткая низковольтная ЛЭП 0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Таким образом, периодическая компонента будет оставаться постоянной по своей амплитуде на протяжении всего времени КЗ. Изменения самого тока КЗ будут происходить лишь когда апериодическая составляющая будет постепенно затухать.

Основные причины

Если подключение устройства в розеточную группу приведёт к превышению суммарной мощности, его следует подсоединить к другой цепи

Автомат в распределительном щитке может сработать вследствие следующих причин:

  • подключение слишком большой нагрузки;
  • короткое замыкание;
  • неисправность самого автомата.

При включении в сеть большого количества электроприборов в цепи может возникнуть ток, значение которого превышает допустимое для этой цепи.

Это может случиться, когда одновременно включаются чайник, машина для стирки, электроплита и другие приборы. В этом случае срабатывает автомат, который отключает сеть.

В современных автоматах на превышение тока реагирует тепловой расцепитель.

При частых срабатываниях автоматического выключателя категорически запрещается его замена на аппарат с большим номиналом!

В случае короткого замыкания происходит резкое увеличение тока. Тогда срабатывает электромагнитный расцепитель автомата. При этом в катушку втягивается сердечник и через рычаги размыкает контакты. Время срабатывания этого расцепителя не превышает 0,02 с.

В некоторых случаях виновником отключения может стать неисправность самого автомата, представляющего довольно сложную конструкцию.

Возможные последствия

Короткое замыкание — самая частая причина пожаров в квартирах и домах

Последствиями внезапного отключения сети при срабатывании автомата, в худшем случае, могут быть перерывы в компьютерной игре или в работе стиральной машины. Гораздо более тяжёлые последствия могут возникнуть, если автомат не сработает. Например, если он откажет при коротком замыкании, то может возникнуть возгорание, которое часто приводит к пожару.

Что делать

Если у вас в квартирном щите до сих пор пробки, то следует покончить с этим раз и навсегда, установив качественные автоматические выключатели

В случае отключения сети вначале желательно разобраться в том, почему выбивает автомат в щитке. Для этого можно использовать следующий алгоритм:

  1. Определить суммарную мощность всех подключённых электроприборов.
  2. Разделить суммарную мощность на напряжение 220 В и определить суммарный потребляемый ток (Iп).
  3. Сравнить потребляемый ток с номинальным током (Iн) автомата.
  4. Если Iп > Iн, то необходимо сократить число включённых приборов таким образом, чтобы Iп

Если неисправность связана с появлением короткого замыкания, то вначале необходимо проверить каждый из подключённых приборов. Это можно сделать, например, путём их поочерёдного отключения. Если окажется, что при отключении всех электроприборов в цепи остаётся короткое замыкание, то следует проверить саму электропроводку, в том числе такие её элементы, как выключатели или розетки.

Если окажется, что автомат отключается сам по себе независимо от наличия неисправностей в цепи, то его следует заменить на исправный.

Поскольку по технике безопасности замену такого прибора необходимо производить при отключённом напряжении, подводимом к щитку, то эту замену лучше поручить электромонтёру.

В большинстве случаев срабатывание автомата в щитке — его штатная работа, и то, что он её выполняет — очень хорошо, так и должно быть, но при условии, что сам автоматический выключатель исправен. Для проверки работы электрической сети в квартире или доме лучше пригласить специалиста.

Использование этого явления

Данное явление нашло свое применение в дуговой сварке, принцип работы которой построен на взаимодействии стержня с металлической поверхностью. Поверхность нагревается до температуры плавки, благодаря чему появляется новое прочное соединение, т.е. сварочный электрод замыкается с заземляющим контуром.

Такие режимы короткого замыкания действуют непродолжительный промежуток времени. В момент сварки в месте соединения стержня и поверхности возникает нестандартный заряд тока, из-за чего выделяется большое количество теплоты. Ее достаточно для плавки металла и создания сварочного шва.

Также короткое замыкание используется в сфере промышленной автоматики, с его помощью создаются информационные системы, которые отражают параметры передачи токового сигнала.

Полезное КЗ применяется в электродинамических датчиках. Например, в индукционных виброметрах, сейсмических приемниках. Короткое замыкание дает возможность дополнительно уменьшить количество колебаний подвижной системы.

Режим КЗ может использоваться при объединении каскадов в электронике, когда выход первого активного компонента работает в режиме КЗ.

Какие виды систем заземления существуют и что такое защитное заземление?

Чем отличается УЗО от дифавтомата

Почему при включении или во время работы стиральной машины выбивает пробки, УЗО или дифавтомат

Что такое ЭДС индукции и когда возникает?

Что такое шаговое напряжение и как покинуть опасную зону

Что такое петля фаза-ноль простым языком — методика проведения измерения

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания.

Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.

  1. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  2. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  3. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  4. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗ Процентное соотношение к общему числу (%)
К(З) 5,0
K(2) 10,0
K(1) 65,0
K(1,1) и K(1+1) 20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Защита от КЗ

Для защиты от КЗ существуют различные устройства:

  • автоматические выключатели;
  • автоматические выключатели с автоматическим возвратом во включенное состояние;
  • УЗО;
  • плавкие предохранители;
  • «пробки»;
  • самовосстанавливающиеся предохранители.

В представленной схеме участвуют стабилитрон и диоды, защищающие светодиоды от воздействия обратных токов. За ограничение тока в системе защиты отвечают 2 резистора. Предохранитель должен быть самовосстанавливающегося типа, номиналы элементов должны подбираться индивидуально в зависимости от условий.

Эффективный способ защиты от представленного явления — применение реактора, ограничивающего ток. Он применяется в системе защиты электрических цепей, где величина КЗ может быть такой силы, с которой обычное оборудование не справится.

Ректор имеет вид катушки с сопротивлением индуктивного типа, подключенной к сети по последовательной схеме. Приемлемое функционирование цепи позволяет соблюдать уровень падения напряжения реактора около 4%. При образовании КЗ основная часть напряжения поступает на это устройство. Такое оборудование бывает масляного и бетонного типов. Каждый из них применяется в зависимости от типа электропроводки и питаемого ею оборудования.

Понятие «короткое замыкание»

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.

По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.

Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.

Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.

Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий

Схемы кз

Короткие замыкания в быту:

  • однофазные – происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.

Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы поиска короткого замыкания

Заранее найти место возникновения этого явления довольно сложно. В большинстве случаев до него нет дела ни специалистам, ни обычным пользователям. Однако это поможет вовремя нейтрализовать его, что приведет к невозможности появления пагубных последствий. Благодаря своевременному реагированию, экономятся финансовые средства и время. Методов как определить короткое замыкание существует несколько:

  • визуальный осмотр проводки (на не должно быть разрывов и оголенных проводов);
  • использование мультиметра или мегаомметра;
  • по звуку;
  • исключение.

Провода, являющиеся составной частью токоведущего кабеля, могут соприкасаться между собой. Если они оголены, то именно это и является явной причиной КЗ. Подобные повреждения, как правило, находятся в распределительных коробках и других узлах электроснабжения (розетки, выключателях и так далее). Подгорелая изоляция кабеля — явное место, где потенциально может образоваться КЗ.

Применение специальных приборов помогает измерить значение сопротивления цепи. В их составе имеется 2 провода: один из них подключается к фазе, а другой — к нолю (далее к заземлению). Если на дисплее прибора отображается 0, значит целостность проводки в норме, если какое-либо другое значение — контакты соприкасаются

Обратите внимание, что напряжение мультиметра довольно маленькое. Им можно измерять цепи, протяженностью не более 3 метров

Поиск места возникновения короткого замыкания по звуку — народный метод определения этого явления. Для этого необходимо тщательно прислушиваться у всех соединений. В месте контакта будет слышно характерное потрескивание. Иногда возникает запах горелой пластмассы и изоляции. Пользоваться таким способом нахождения КЗ следует пользоваться только в крайнем случае при недоступности других методов.

Очень часто бывает, что виновником является подключенный электроприбор. Его включение сразу приведет к срабатыванию предохранителя. Это приведет к моментальному отключению электроснабжения участка. Найти такой прибор можно методом исключения, поочередно включая все устройства.

Специалисты настоятельно рекомендуют не применять устаревшие способы поиска КЗ. В большинстве случаев они не показывают должной точности и эффективности. Если возникла необходимость найти место КЗ, необходимо пригласить профессионалов, которые будут использовать качественное и точное оборудование.

Составные части короткого замыкания

Прежде чем рассуждать об ударном токе, необходимо рассмотреть из каких частей вообще состоит полный ток короткого замыкания. Известно, что его основными составляющими являются свободная апериодическая часть и вынужденная периодическая компонента. Своей максимальной отметки ток КЗ достигает при наивысших значениях обеих составных частей.

Апериодический ток в самом начале появления становится максимальным в момент нулевого значения тока в предыдущем режиме, представляющем собой холостой ход. Непосредственно при наступлении КЗ, вынужденный ток с периодической составляющей проходит свою максимальную отметку. Данное условие становится показателем, используемым в расчетах. Полный ток КЗ с максимальным мгновенным значением и есть ударный ток короткого замыкания.
На практике этот показатель рассчитывается при максимальной величине апериодической части. С этой целью выбирается режим, предшествующий аварии, называемый холостым ходом. Данной состояние сети считается одним из наиболее сложных по сравнению с индуктивным или активно-индуктивным доаварийным током, при которых показатель апериодической части будет ниже.

Условия, при которых образуется апериодическая составляющая, приведены на рисунке. Они полностью зависят от предыдущего состояния тока до аварийного режима. Красный вектор соответствует доаварийному току, синий – периодическому току КЗ. Вектор зеленого цвета показывает разницу между ними, выдающую величину апериодического тока в начальной стадии.

Защита цепей и оборудования

После того как электротехника получила толчок к своему интенсивному развитию, возникла серьезная проблема по защите от короткого замыкания и его последствий. Особую актуальность она приобрела с повышением мощности электродвигателей, генераторов, осветительных приборов и другого оборудования.

Простейшим решением стала последовательная установка вместе с нагрузкой плавких одноразовых предохранителей. В случае превышения током установленного значения, выделяемое резистивное тепло воздействовало на них. В результате, предохранители разрушались, прерывали цепь и процесс короткого замыкания прекращался. Подобные элементы до сих пор пользуются спросом из-за своей надежности, простоты и низкой стоимости.

Единственным недостатком такой конструкции является возможность замены плавкой вставки различными металлическими предметами – проволокой, гвоздями или скрепками. Они обладают совершенно другими параметрами и уже неспособны защитить от перегрузок и коротких замыканий.

Ситуация совершенно изменилась, когда на смену одноразовым устройствам пришли автоматические защитные средства. Вначале они стали активно использоваться в промышленности, а потом нашли свое применение в квартирных электрощитах. Автоматика гораздо удобнее в пользовании, поскольку такие устройства не требуют замены. После устранения причин короткого замыкания тепловые элементы остывают, и прибор вновь готов к использованию. Подгоревшие контакты нежелательно чистить или ремонтировать. В случае необходимости они легко заменяются новыми.

Как вычислить апериодическую компоненту

Первоначальная величина апериодической части в модульном выражении определяется как разница между мгновенным показателем периодической части в начале КЗ и величиной тока непосредственно перед замыканием. То есть, апериодическая составляющая с максимальным первоначальным значением, сравняется с амплитудными параметрами периодической части тока при появлении КЗ. Это утверждение определяет формула: ia0 = √2Iп0, действующая при условии сниженной активной доли сопротивления в точке КЗ относительно индуктивной составляющей.

1. 

Кроме того, перед началом замыкания в расчетной точке не должно быть нагрузки, а напряжение какой-либо фазы к этому времени проходит по нулевому проводнику. Если же перечисленные требования не будут выполнены, то апериодическая часть в первоначальной стадии снизит свои показатели по отношению к амплитуде периодической составляющей.

Для того чтобы выполнить расчет апериодической составляющей тока короткого замыкания в любое произвольное время, заранее прорабатывается вариант замещения. Согласно первоначальной расчетной схеме, все составные элементы учитываются в качестве активных и индуктивных сопротивлений. Учет синхронных генераторов и компенсаторов, асинхронных и синхронных электродвигателей проводится путем перевода их в категорию индуктивных сопротивлений с обратной последовательностью. Обязательно учитываются сопротивления обмоток статора постоянному току с рабочей температурой установленной нормы.

3. 

Когда в изначальной схеме расчетов присутствуют лишь компоненты, соединенные последовательно, в этом случае величина апериодической доли в любой момент времени определяется формулой 1, в которой Та является постоянной величиной, определяющей время затухания данной части. В свою очередь, Та можно вычислить по формуле 2, в которой Xэк и Rэк будут индуктивной и активной составляющими, а ωсинх является синхронной угловой частотой сетевого напряжения. Если же при расчетах необходимо учесть величину генераторного тока непосредственно перед коротким замыканием, тогда уже используется формула 3.

Пример приближенного расчета токов короткого замыкания в сети 0,4 кв

Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.

Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».

Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.

Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания. Расчет

Расчет

Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.

Рис.1 – Однолинейная электрическая схема 380 В

Расчет токов к.з. для точки К1

Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.

1. Определяем активное и индуктивное сопротивление фазы трансформатора:

где:

  • Sт – мощность трансформатора, кВА;
  • с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
  • d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
  • k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.

2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:

где:

  • L – длина участка, км;
  • Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
  • а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
  • b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;

3. Определяем полное сопротивление фазы:

4. Определяем ток трехфазного короткого замыкания:

Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.

Расчет токов к.з. для точки К2

5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:

6. Определяем полное сопротивление петли фаза-нуль:

где: Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.

7. Определяем ток однофазного короткого замыкания на землю:

Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.

Таблица 1 – Расчет токов к.з.

Точка КЗ Rф, Ом R0, Ом Хф, Ом Х0, Ом Rт, Ом Хт, Ом Zф-0, Ом Zт, Ом Iк.з.(3), А Iк.з.(1), А
К1 0,07 0,02 0,0078 0,023 0,089 2468
К2 0,241 0,374 0,022 0,022 0,674 326
К3 0,374 0,598 0,0231 0,0231 0,99 222
К4 0,174 0,278 0,022 0,022 0,512 429
К5 0,694 1,11 0,0259 0,0259 1,8 122
К6 0,174 0,278 0,022 0,022 0,512 429

Всего наилучшего! До новых встреч на сайте Raschet.info.

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Составные части короткого замыкания

Прежде чем рассуждать об ударном токе, необходимо рассмотреть из каких частей вообще состоит полный ток короткого замыкания. Известно, что его основными составляющими являются свободная апериодическая часть и вынужденная периодическая компонента. Своей максимальной отметки ток КЗ достигает при наивысших значениях обеих составных частей.

Апериодический ток в самом начале появления становится максимальным в момент нулевого значения тока в предыдущем режиме, представляющем собой холостой ход. Непосредственно при наступлении КЗ, вынужденный ток с периодической составляющей проходит свою максимальную отметку. Данное условие становится показателем, используемым в расчетах. Полный ток КЗ с максимальным мгновенным значением и есть ударный ток короткого замыкания.

На практике этот показатель рассчитывается при максимальной величине апериодической части. С этой целью выбирается режим, предшествующий аварии, называемый холостым ходом. Данной состояние сети считается одним из наиболее сложных по сравнению с индуктивным или активно-индуктивным доаварийным током, при которых показатель апериодической части будет ниже.

Условия, при которых образуется апериодическая составляющая, приведены на рисунке. Они полностью зависят от предыдущего состояния тока до аварийного режима. Красный вектор соответствует доаварийному току, синий – периодическому току КЗ. Вектор зеленого цвета показывает разницу между ними, выдающую величину апериодического тока в начальной стадии.

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего.

Оборудование и установки Постоянная времени Та Ударный коэффициент Ку
Турбогенераторы 0,1-0,3 1,95
Блок, состоящий из генератора и трансформатора 0,04 1,8
Высоковольтная ЛЭП 0,01 1,3
Короткая низковольтная ЛЭП 0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Таким образом, периодическая компонента будет оставаться постоянной по своей амплитуде на протяжении всего времени КЗ. Изменения самого тока КЗ будут происходить лишь когда апериодическая составляющая будет постепенно затухать.

2.1. Порядок измерения прибором MZC-300, MZC-303E

2.1.1 Условия выполнения измерений и получения правильных результатов

Чтобы начать измерение, необходимо соблюдение нескольких условий. Измеритель автоматически блокирует возможность начала измерений (это не касается измерения напряжения сети) в случае обнаружения каких-либо из ниже перечисленных ненормальных условий:

Ситуация Отображаемые символы и предупреждающие сигналы Пояснения Напряжение, приложенное к измерителю, больше 250В. Надпись OFL и длительный звуковой сигнал. Незамедлительно отсоедините измеритель от испытуемой сети! Нарушена целостность провода PE/N. Отображается символ _—_ и звучит продолжительный звуковой сигнал

Символ и звуковой сигнал появляются после нажатия клавиши Необходимо принять меры предосторожности, так как в испытуемой сети отсутствует защита от сверхтоков! Напряжение, приложенное к измерителю, слишком мало для измерения сопротивления – менее 180В. Отображается надпись -U- и звучат два длинных звуковых сигнала

Надпись и звуковые сигналы появляются после нажатия клавиши Термическая защита блокирует измерение, что возможно при очень интенсивных измерениях. Отображается символ Т на дисплее и звучат два длинных звуковых сигнала. Символ и звуковые сигналы появляются после нажатия клавиши Во время Автокалибровки сумма полного сопротивления цепи и полного сопротивления измеряемого провода очень велика. Вместо результата измерения отображается символ ]-[, прибор дополнительно генерирует два длинных звуковых сигнала.

Измеритель также сигнализирует о ситуации, в которой результат измерения не может быть признан верным: ¦ Если элементы питания разряжены, то на дисплее попеременно с результатом измерения напряжения отображается надпись bAt . Заданное измерение можно произвести, однако полученные результаты не могут быть основанием для правильной оценки электробезопасности испытуемой электроустановки.

2.1.2 Способы подключения измерителя

Рис.6. Измерение в рабочей цепи (L-N)

Рис. 7. Измерение в защитной цепи (L-PE) а) сети TN (с занулением) б) сети ТТ (с защитным заземлением)

Рис. 8. Тестирование эффективности защиты корпуса электроустановки

Измеритель подключается к тестируемой цепи или к устройству как показано на Рис.6, 7 и 8

Следует обратить внимание на правильный подбор измерительных наконечников, так как точность выполняемых измерений сильно зависит от качества выполненных подключений. Следует обеспечить хорошее соединение и сделать возможным непрерывное протекание большого измерительного тока

Недопустимо, например, присоединение зажима «Крокодил» к грязным или ржавым элементам — необходимо их тщательно очистить или использовать для измерений остроконечные зонды.

2.1.3 Измерение напряжения переменного тока

Приборами семейства MZC-300 можно измерить напряжение переменного тока в диапазоне 0. 250В. Прибор измеряет напряжение между измерительными гнёздами L и PE/N. Входное сопротивление вольтметра не менее 150 кОм. Включение режима вольтметра происходит автоматически после включения питания измерителя, а также примерно через 5 секунд после: • Выполнения измерения полного сопротивления, ожидаемого тока короткого замыкания либо сопротивления измерительного провода (во время Автокалибровки); • Последнего нажатия какой-либо из клавиш, связанных с выводом на дисплей результатов измерения.