Стабилизатор 78l05

Содержание

78l05 схема включения

78l05 схема включения — это самый популярный пяти вольтовый стабилизатор напряжения, аналог маломощной микросхемы 7805. В данной статье публикуется описание, параметры и сама схема включения прибора 78L05. В сущности чуть ли не каждая фирма в мире, которая создает интегральные микросхемы, выпустила свой аналоговый элемент этого чипа. Определение производителя данного электронного элемента читается по первым двум буквам, например: LM78L05 (TAIWAN SEMICONDUCTOR), TS78L05 (TAEJIN Technology HTC Korea).

Естественно, чтобы знать точные параметры электронного прибора, для этого конечно нужно воспользоваться официальным даташитом. Хотя и в официальной спецификации 78l05 схема включения есть некоторые нюансы, в частности это представленный эскиз расположения выводов, который не достаточно графически ясно выполнен. А когда приходится делать какой-либо ремонт или производить наладку устройства, то приходится смотреть одновременно на два изображения.

То-есть определять название и порядковый номер вывода и дополнительно смотреть где расположен вывод на самом корпусе. Несмотря на то, что на этом чипе вывод под номером 1 является выходной шиной, а последний вывод входным, на практике несколько раз дезориентировало меня. В итоге я неправильно делал разводку печатной платы. Чтобы впредь не повторить таких курьезов, я нанес обозначения выводов непосредственно на эскизы корпусов: ТО-92, SOT-89, SO-8.

78L05 схема включения

Представленная здесь микросхема наверное самая простая по своей конструкции, в составе которой находятся всего-навсего сам стабилизатор и пара конденсаторов. Для обеспечения корректной работы прибора, а также чтобы избежать возможности генерирования пульсирующих напряжений, на входном и выходном трактах нужно подключить конденсаторы. Номинальные значения подключаемых емкостей должны быть не менее 0,33 мкФ и 0,1 мкФ соответственно.

При использовании для питания стабилизатора выпрямленного напряжения с частотой 50Гц, то тогда емкость по входу необходимо увеличить. Лучше установить электролитический конденсатор, который имеет большее последовательное сопротивление. В этом варианте нужно электролит зашунтировать керамическим конденсатором.

Характеристики параметров стабилизатора напряжения 78L05

  • Напряжение на выходе +5v.
  • Ток на выходе 0,1 А.
  • Оптимальное выходное напряжение от +7v до + 20v.
  • Оптимальный диапазон температур от 0 до 130 °C.

Если есть необходимость в получении отрицательного стабилизированного напряжения -5v, то тогда нужно воспользоваться микросхемой 79L05. Ориентироваться в обозначениях очень просто — вторая цифра в коде означает, что этот прибор выполняет стабилизацию положительного напряжения, а цифра 9 — отрицательного напряжения. Буква L в коде, показывает номинальный ток 0,1 А, имеются модели с букой «m» — это ток 0,5 А, а если вообще без буквы, то этот прибор рассчитан на ток в 1 А. Последние две цифры в кодовом обозначении показывают номинальное выходное напряжение от 5 до 24v.

Аналоги отечественный производителей

На внутреннем рынке также представлен широкий выбор отечественных аналогов этого стабилизатора напряжений — КР1157ЕНхх, КР1181ЕНхх. В частности микросхему 78L05 можно заменять аналогами КР1157ЕН5 и КР1181ЕН5. Кренки серии КР1181 имеют корпус TO-92, а КР1157ЕН5 выполнены в более массивном корпусе с допустимым током 0,25 А, который можно устанавливать на теплоотвод.

Корпус TO-92 — обозначение функций контактов по их номерам

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

L05 схемы самодельных устройств

Регуляторы напряжения имеют разные типы. Это интегральная схема, основной целью которой является регулирование нерегулируемого входного напряжения и обеспечение постоянного регулируемого выходного напряжения. Общим типом классификации является 3 терминальных стабилизатора напряжения и 5 или многопозиционный стабилизатор напряжения.

Эти регуляторы обеспечивают постоянное выходное напряжение. Фиксированный регулятор напряжения может быть положительным регулятором напряжения или отрицательным регулятором напряжения. Положительный стабилизатор напряжения обеспечивает постоянное положительное выходное напряжение.

Принцип стабилизации тока

Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.

Требования к управляющему элементу

Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:

  • ток в контрольной цепи поддерживается с определенной точностью;
  • следует компенсировать перепады потребляемой мощности;
  • корректирующие изменения должны выполняться достаточно быстро;
  • для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.

Суть стабилизации

Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.

Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается. Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника

Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

https://www.youtube.com/watch?v=ERiJ56brWoY

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором R* можно задать необходимый ток зарядки для конкретного аккумулятора.


Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

(729,7 KiB, скачано: 6 824)

LM317 и LM337. Особенности применения. | РадиоГазета

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5

Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Значение ИОН в схеме стабилизатора

Источник опорного напряжения является одним из ключевых элементов, поскольку выполняет задачу поддержания стабильного напряжения номинального значения на выходе при меняющихся значениях напряжения на входе. Простейшим вариантом этого источника является параметрический стабилизатор на стабилитроне. С их помощью можно получить напряжение от 2,5 В.

При необходимости получить меньшие значения опорного напряжения используются последовательные включения кремниевых диодов.

Также интегральные стабилизаторы могут использовать в качестве источника напряжение
эмиттерного перехода биполярных транзисторов.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Характеристики

Начнём знакомство с техническими характеристиками микросхемы L7805CV с рассмотрения предельно допустимых параметров

Их знание  важно при проектировании новых электронных приборов. Если их значения выйдут за пределы нормы, устройство может выйти из строя

Вот они:

  • предельно допустимое напряжение на входе – 35 В;
  • выходной ток – более 1,5 А;
  • термическое сопротивление кристалл — окружающая среда – 50 ОС/Вт;
  • тепловое сопротивление кристалл — корпус 5 ОС/Вт;
  • рабочая температура – 0 … +150 ОС;
  • температура хранения — -65 …+150 ОС .

Теперь можно детально рассмотреть все остальные электрические параметры. Их значения были измерены при температуре +25ОС. Остальные условия проведения тестирования можно найти в колонке «Условия тестирования» приведённой ниже таблицы.

Название параметра Обозн Условия тестирования мин тип макс Ед. изм
Напряжение на выходе VO TJ= 25°C 4,8 5 5,2 В
IO=5 мA … 1A;

Po≤15 Вт;

Vin=8 … 20 В;

4,65 5 5,35
Отклонение выходного напряжения в зависимости от входного △VO 7 ≤ Vin ≤ 25 V

TJ= 25°C

50 мВ
8 В ≤ Vin ≤ 12 В

TJ= 25°C

25
Отклонение выходного напряжения в зависимости от тока нагрузки △VO 5,0 мA≤IO≤1,5 A

TJ= 25°C

100 мВ
250мA≤IO≤750мA

TJ= 25°C

25
Ток покоя Id TJ= 25°C 6,0 мА
Отклонения тока покоя △ Id 5 мA≤IO≤1 A 0,5 мА
8 В ≤ Vin ≤ 25 В 0,8
Изменение выходного напряжения ∆VO/∆T IO= 5 мA 0,6 мВт/ОС
Выходное шумовое напряжение eN 10Гц≤В ≤100кГц

TJ= 25°C

40 В
Отношение величины входного напряжения к выходному SVR 8 В ≤ Vin ≤ 18 В

f = 120 Гц

68 дБ
Падение напряжения Vd IO= 1 A TJ= 25°C 2 2,5 В
Выходное сопротивление RO f = 1 кГц 17 мОм
Ток короткого замыкания Isc VI=35В, TJ= 25°C 0,75 1,2 А
Пиковый ток короткого замыкания Iscр TJ= 25°C 1,3 2,2 3,3 А

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Читать также: Устройство для зарядки акб

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.