Описание схемы повышающего регулятора мощности
На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.
Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.
Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.
Другие возможные варианты устройств для рассеивания напряжения
Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.
При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.
Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.
Конструкция и детали.
В схеме используются два кремниевых транзистора: КТ315 и КТ361. Так как корпуса у них одинаковые, то различаются они по месту расположения буквенной маркировки. На рисунке эти места обозначены стрелками.
У транзистора КТ315 буква всегда расположена в левом верхнем углу
корпуса, а у КТ361 буква всегда наносится всередине корпуса . Все остальные обозначения это: год выпуска, месяц, партия.
На следующем рисунке изображены диод и стабилитрон
Здесь нужно обратить внимание на цоколевку их выводов. Как правило, цоколевка наносится на корпусе элемента в виде полоски, точки или нескольких точек со стороны обозначаемого вывода
Также встречаются диоды, у которых на корпусе нанесено условное обозначение диода, применяемое на принципиальных схемах. Как именно нанесено обозначение относительно выводов, значит, такое расположение анода и катода соответствует действительности.
У импортных диодов и стабилитронов наносится полоска со стороны вывода катода, а у мощных, цоколевка наносится в виде условного обозначения диода.
У Советских и Российских диодов цоколевка немного отличается от импортной. Здесь используется и полоска, и точки, и условное обозначение диода. К тому же еще обозначаются и вывод анода, и вывод катода. Так что, в любом случае, желательно использовать справочник или измерительный прибор для более точного определения выводов.
В схеме регулятора мощности, в качестве регулируемого элемента, используется тиристор. Сам по себе тиристор напоминает диод, только у него есть еще один вывод – управляющий электрод.
В закрытом состоянии тиристор не пропускает ток, и если на его управляющий электрод подать отпирающее напряжение, то тиристор откроется, и через анод и катод потечет ток. Чем больше будет ток отпирающего напряжения, тем больший ток будет пропускать тиристор через себя.
Если возникнут проблемы с приобретением резистора R5, то его можно будет сделать из двух резисторов, соединенных последовательно. Все остальные детали простые, поэтому на них останавливаться не будем.
В качестве корпуса регулятора мощности, как вы уже догадались, возьмем накладную розетку
Когда будете покупать, то обратите внимание, чтобы сама розетка была сделана из пластмассы. , а не из керамики
, а не из керамики.
Это нужно для того, если вдруг тиристор не будет влезать в корпус, то от пластмассы всегда можно срезать лишний кусок.
Собирать регулятор будем из двух частей. Низковольтную часть лучше собрать на фольгированном стеклотекстолите, плотном картоне или любом другом диэлектрическом материале — так будет аккуратней. А вот высоковольтную часть сделаем навесным монтажом, как показано на рисунке ниже.
Здесь отверстия обозначены черными точками, а все соединения между точками и деталями — дорожки
, показаны синими линиями. Плата схемы управления и силовая часть соединяются между собой тремя красными проводниками.
https://youtube.com/watch?v=b8sgtr6B5d4
https://youtube.com/watch?v=A4yQuJBi-aQ
Электрические принципиальные схемы регуляторов температуры паяльника
Прежде чем приступить к созданию и установке регулятора, необходимо ознакомиться с основными принципиальными схемами.
Схема регулятора для паяльника без помех на микросхеме
Данный вариант используют довольно редко, так как воплотить в жизнь такую схему непросто. Однако если в доме подключено огромное количество электроники, лучше пользоваться именно таким регулятором. Он будет отлично работать и при этом не выдавать в сеть помехи.
Стоит отметить, что пользоваться данной схемой нужно только в тех случаях, если человек работает с паяльной станцией ежедневно. Если же она большую часть времени лежит без дела, можно попробовать варианты попроще.
На базе фазовых регуляторов мощности PR1500S
PR1500S часто используется для изменения мощности паяльников В данном случае устройство оснащается специальным фазовым регулятором. Других деталей в этой схеме не так много и поэтому сборка конструкции выполняется достаточно быстро.
Чтобы сделать регулятор температуры паяльника, используя эту схему, придется заранее подготовить резистор переменного типа с встроенным выключателем. Также понадобится конденсатор на 620 В. Он нужен, чтобы устранить помехи, которые могут появиться во время работы.
Регулятор мощности на симисторе КУ208Г
Это одна из наиболее простых схем, которую часто используют во время создания регуляторов мощности паяльника. Все, что понадобится для изготовления устройства — симистор и димистор.
Чтобы приспособление для настройки температуры правильно работало, пригодится димистор DB3 и симистор ВТ139.
Главное достоинство такой схемы — ее компактность. Она без проблем помещается в зарядный блок телефона.
На оптосимисторе МОС204х/306х/308х
Оптосимисторы устанавливаются практически во все регуляторы Относительно популярная схема, которой довольно часто пользуются во время создания регуляторов. В этом случае при создании устройства рекомендуется пользоваться оптическими симисторами, так как они могут открываться, если напряжение переходит через ноль.
Также в схеме используется специальный индикатор-таймер 555 серии. Он необходим для своевременного отключения регулятора.
Регулировка на интегральном стабилизаторе
Распространенный метод настройки мощности паяльной станции — использование стабилизаторов интегрального типа. С их помощью удастся легко сделать регулятор напряжения, который позволит уменьшать и увеличивать температуру нагрева паяльного жала.
Единственный серьезный недостаток применения таких стабилизаторов заключается в том, что они сильно нагреваются. Это часто приводит к перегреванию стабилизирующей микросхемы.
С ШИМ-контроллером
Некоторые люди решают регулировать мощность при помощи специального ШИМ-контроллера. Для таких целей можно воспользоваться любой моделью, которая работает на частоте около 1 Гц. В качестве основного коммутирующего элемента в этой плате используется полевой транзистор. Его можно купить или найти на любой старой материнке. Подойдет любой транзистор, напряжение которого не опускается ниже 12 В.
Принцип действия тиристора
Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.
Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?
Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.
После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.
См. также: Подключение участка к электричеству vfnthbfk
Область использования тиристорных устройств
На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В
Схема собиралась не раз, работает без наладки и других проблем
Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.
Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.
Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.
С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток. Симистор (тиристор) вместо реле.
Различные схемы регулирования температуры устройства
При наличии необходимых умений собрать устройство для регулировки мощности паяльника своими руками не так сложно
Важно правильно выбрать схему регулятора. Схем сборки существует множество, назовем самые популярные:
Устройство электрического паяльника.
- С тиристором. Самый популярный вариант регулятора. Изготавливается из доступных материалов, позволяющих сделать регулятор малых размеров.
- С резистором. Такая схема считается самой простой. Одновременно с инструментом включается переменный резистор. Недостатки такого вида регуляторов: небольшая мощность, переходящая в тепло.
- С полевым транзистором и микросхемами. Схема позволяет регулировать мощность любым способом: и увеличивать, и понижать ее по необходимости. В схеме присутствует мост, благодаря которому на выходе можно получить напряжение до 300 В.
- С диодом и резистором. Схема предполагает три режима работы. Работа в дежурном режиме: с выключением инструмента включается и резистор, устанавливающий нужный режим. Паяльник питается с помощью диода, из-за чего в два раза снижается мощность инструмента. Максимальный режим: инструмент подключается к сети. Рабочий режим: включается резистор, который выбирает необходимую для работы мощность.
Работает терморегулятор по следующему принципу: устройство получает питание от прибора, который будет регулироваться. Ток поступает на выпрямительный мост, где ток переменный превращается в постоянный. Затем он попадает через фильтры и резистор на вывод. Тот, в свою очередь, пропускает ток на нагревательный элемент. При повороте ручки резистора процесс пойдет с задержкой, продолжительность которой определяется от продолжительности заряда конденсатора. Этот процесс и будет влиять на температуру нагрева жала паяльника.
Поэтому лучше сделать регулятор по более сложной схеме.
Принципиальная схема регулятора мощности.
Эту схему я собрал так давно, что даже и не помню когда. Она была опубликована в журнале «Радио» № 2-3 за 1992 г. автора И. Нечаева, и за все время эксплуатации регулятора не было ни одного отказа.
Как Вы видите, схема очень простая, и состоит всего из двух частей: силовой и схемы управления.
К силовой части относится тиристор VS1, с анода которого снимается регулируемое напряжение, через которое паяльник включается в сеть 220В.
Схема управления, собранная на транзисторах VT1 и VT2, управляет работой тиристора. Питается она через параметрический стабилизатор, образованный резистором R5 и стабилитроном VD1. Стабилитрон VD1 служит для стабилизации и ограничения возможного повышения напряжения, питающего схему управления. Резистор R5 гасит лишнее напряжение, а переменным резистором R2 регулируется выходное напряжение регулятора мощности.
Вот такой небольшой набор нам понадобится, для сборки регулятора мощности для паяльника.
Регулятор мощности для паяльника на 20-36 В переменного напряжения
Если паяльник работает от пониженного сетевого напряжения 20-36 В, применять для него схемы на тринисторе бесполезно. Они практически не работают — на тринисторе напряжение падает на 10-15 В. При исходных 220 В это не оказывает большого влияния на работу паяльника. Но при 20-36 В такое понижение уже критично — паяльник работает на половину мощности, чего явно недостаточно для нормальной пайки.
Схема для паяльника работающего от пониженного сетевого напряжения
Что в этом регуляторе мощности паяльника (и ТЭНа, и другой нагрузки без большой индуктивной составляющей) хорошего?
- Он дает понижение напряжения всего 1,5-2 В, что даже для 20 В на входе не так и много.
- Можно задавать пределы регулировки мощности в зависимости от того 20 В переменки у вас или 36. За это отвечает переменный резистор R4.
- Та же функция дает возможность работать от 45 В.
В общем, универсальный регулятор мощности паяльника для сетей пониженного переменного напряжения.
Элементная база
Большая часть элементной базы указана на схеме, но некоторые детали можно заменить.
- Транзистор VT1 должен быть КТ815Б, можно ставить еще КТ815, В и Г, КТ807 АМ и БМ; КТ817 Б, В, Г.
- Транзистор VT2 — лучше КТ 814 Б В или Г, но может быть КТ816 Б, В, Г; ГТ906 АМ.
- Диодный мост VD1 указан КЦ401А, можно заменить КЦ402 А, В, С , D, E. Можно собрать мост на диодах КД212А, КД213.
- Диоды VD3 и VD 4 ставим любые малого размера — плоские или точечные (серия Д9 лучше всего).
- Конденсаторы:
- C1 и C2 — оксидные типа К50-3, К 50-6, К 50-24.
- С 3 — К 10-7 или КЛС.
- Резисторы берем серий ВС и МЛТ.
Можно ли ставить не указанные в перечне элементы? Указаны только аналоги отечественного производства, но есть еще и импортная база. Только внимательнее с характеристиками при выборе замены.
Особенности монтажа
Для этого регулятора есть макет печатной платы (на рисунке ниже). Все детали размещаем на этой плате. Только резистор R4, который задает пределы регулировки, устанавливаем так, чтобы он был а корпусе. Конденсатор C1 крепим в горизонтальном положении, используя проволочные скобы остальные — без разницы.
Печатная плата к схеме регулятора паяльника на 20-36 В переменного напряжения
Параметры резисторов R2 и R3 подбираются в зависимости от желаемых пределов регулирования.
Для нормальной работы транзистор VT2 надо смонтировать на радиаторе. Площадь — 20-30 см², на плате отведено место под Г-образный радиатор.
На лицевой стороне корпуса или сверху кроме переменного резистора удобно установить розетку для подключения паяльника. Собственно, это все рекомендации по монтажу.
Более простой вариант
Если хочется чего-то более простого, есть вполне работоспособная схема с минимумом элементов. Она вообще помещается в корпус от зарядного устройства.
Простая схема регулятора паяльника низковольтного переменного напряжения
Основная переделка — проделать отверстие под вывод ручки переменного резистора. Но никакой подстройки, все «дубовое», но работает.
https://youtube.com/watch?v=UvAO4UkXoIg
На микроконтроллере
В том случае, когда исполнитель полностью уверен в своих силах, ему можно будет взяться за изготовление термостабилизатора для паяльника, работающего на микроконтроллере. Этот вариант регулятора мощности выполняется в виде полноценной паяльной станции, имеющей два рабочих выхода с напряжениями 12 и 220 Вольт.
Первое из них имеет фиксированную величину и предназначается для питания миниатюрных слаботочных паяльников. Эта часть устройства собирается по обычной трансформаторной схеме, которую из-за её простоты можно не рассматривать.
На втором выходе собранного своими руками регулятора для паяльника действует переменное напряжение, амплитуда которого может меняться в диапазоне от 0 до 220 Вольт.
Схема этой части регулятора, совмещённая с контроллером типа PIC16F628A и цифровым индикатором выходного напряжения, приводится так же на фото.
Для безопасной эксплуатации оборудования с двумя отличающимися по величине выходными напряжениями самодельный регулятор должен иметь различные по конструкции (несовместимые между собой) розетки.
Подобная предусмотрительность исключает возможность ошибки при подключении паяльников, рассчитанных на разные напряжения.
Силовая часть такой схемы выполнена на симисторе марки ВТ 136 600, а регулировка мощности в нагрузке осуществляется посредством коммутатора кнопочного типа с десятью положениями.
Переключением кнопочного регулятора можно изменять уровень мощности в нагрузке, обозначаемый цифрами от 0 до 9-ти (эти значения выводятся на табло встроенного в устройство индикатора).
В качестве примера такого регулятора, собранного по схеме с контроллером SMT32, может быть рассмотрена станция, рассчитанная на подключение паяльников с жалами марки Т12.
Этот промышленный образец устройства, управляющего режимом нагрева подключаемого к нему паяльника, способен регулировать температуру жала в диапазоне от 9-ти до 99-ти градусов.
Простейший регулятор мощности из проволочного резистора
Как залудить паяльник: подготовка и уход за паяльником
Простейший регулятор температуры паяльника своими руками можно создать, применив всего 2 элемента: проволочный резистор мощностью 25 Вт, сопротивлением 1кОм (СП5-30) и ручку поворотного типа. Резистор необходимо заключить в корпус (обязательно выполненный из диэлектрического материала), надежно закрепив его там. Остается на ось резистора надеть ручку и можно плавно регулировать мощность. На корпусе проделываются гнезда для вилки, или подпаиваются провода паяльника, а также устанавливается шкала. Простейшее устройство готово.
Принципиальная схема и конструктивное исполнение
Обратите внимание! Мощность такого инструмента не превышает 25 Вт
Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.
Корпус подберите любой
Простые схемы на тиристоре
При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н
Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий
Проверен не раз
Этот вариант рабочий. Проверен не раз.
Схема регулятора температуры для паяльника на тиристоре
При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².
Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.
https://youtube.com/watch?v=gKzuD_SHBiY
На других элементах но тоже без помех
Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.
Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации
Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.
На тиристоре с высокой чувствительностью
Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.
Регулятор мощности для паяльника без помех
Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).
Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.
Если собрали, но напряжение не регулируется
Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).
Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника
Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.
Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.
Какой паяльник лучше выбрать?
Перед многими людьми стоит вопрос о том, какой паяльник выбрать: керамический или медный. Для этого необходимо прочитать множество отзывов, а также техническую документацию. Любитель должен прислушиваться к мнению профессионалов, так как они обладают достаточным опытом в сфере спайки. Итак, для начала необходимо определиться с преимуществами и недостатками этих устройств.
Положительными свойствами медных паяльников с регулятором температуры являются:
- Низкая стоимость устройства.
- При падении не подвергается механическим воздействиям.
Отрицательные стороны:
- При включении в электросеть нагрев жала происходит с малой скоростью.
- Срок службы довольно маленький, так как из-за постоянного перегрева проволока сгорает. Но данное свойство проявляется в том случае, когда паяльник непрерывно работает на протяжении долгого времени. При редком использовании данный недостаток не проявляется.
Что касается керамических паяльников с регулировкой температуры, то их достоинства заключаются в следующем:
- При бережном использовании устройство может прослужить долгое время.
- Нагрев происходит гораздо быстрее, чем у паяльников медного типа.
- Оборудование не перегорает, так как состоит из цельной керамической конструкции.
Как и каждое устройство, керамический паяльник имеет свои недостатки:
- Подвергается ударам. При падении керамический корпус может треснуть или разбиться.
- При поломке жала необходимо использовать только оригинальные элементы.
Тринисторный регулятор мощности для паяльника
В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования номинальной мощности такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.
Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.
Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.
Простейшая схема регулятора
Самый простой регулятор температуры для паяльника можно собрать из диода с максимальным прямым током соответственно мощности паяльника и выключателя. Схема собирается очень просто – диод подключается параллельно контактам выключателя. Принцип работы: при разомкнутых контактах на паяльник поступают только полупериоды одной полярности, напряжение будет равно 110 В. Паяльник будет иметь низкую температуру. При замыкании контактов на паяльник поступит полное напряжение сети номиналом 220 В. Паяльник за несколько секунд прогреется до максимальной температуры. Такая схема позволит предохранить жало инструмента от перегрева и окисления, поможет значительно снизить расход электроэнергии.
Конструктивное исполнение может быть любым. Можно использовать ручной выключатель или установить выключатель с системой рычагов на подставке. При опускании инструмента на подставку выключатель должен разомкнуть контакты, при поднятии замкнуть.
Доставка
Заказывал на тао через посредника YOYBUY.COM, который позволяет в пару кликов заказывать товары в РФ со многих «недоступных» китайских сайтов. В данный момент новым пользователям предлагается купон на скидку $10 действующий на заказы от $50, с помощью него можно хорошо сбить цену за доставку и купить товар дешевле чем на других площадках. Рефералка для регистрации: зарегистрируйтесь и получите купон на $10. Помимо паяльника в заказе был еще Convoy C8, который я обозревал ранее, всего с учетом доставки за заказ я отдал $55.49:
При этом чисто за доставку вышло около $18, из которых $10 я скостил купоном, в итоге по факту фонарь с паяльником вышли примерно по $22 каждый.
Благодарю за внимание!
Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.
Корпус подберите любой
Простые схемы на тиристоре
При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н
Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий
Проверен не раз
Этот вариант рабочий. Проверен не раз.
Схема регулятора температуры для паяльника на тиристоре
При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².
Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.
На других элементах но тоже без помех
Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.
Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации
Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.
На тиристоре с высокой чувствительностью
Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.
Популярные статьи Японский мак
Регулятор мощности для паяльника без помех
Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).
Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.
Если собрали, но напряжение не регулируется
Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).
Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника
Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.
Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.