Стабилизированный регулятор мощности паяльника на микроконтроллере

Содержание

Регулятор мощности для паяльника на 20-36 В переменного напряжения

Если паяльник работает от пониженного сетевого напряжения 20-36 В, применять для него схемы на тринисторе бесполезно. Они практически не работают — на тринисторе напряжение падает на 10-15 В. При исходных 220 В это не оказывает большого влияния на работу паяльника. Но при 20-36 В такое понижение уже критично — паяльник работает на половину мощности, чего явно недостаточно для нормальной пайки.

Схема для паяльника работающего от пониженного сетевого напряжения

Что в этом регуляторе мощности паяльника (и ТЭНа, и другой нагрузки без большой индуктивной составляющей) хорошего?

В общем, универсальный регулятор мощности паяльника для сетей пониженного переменного напряжения.

Элементная база

Большая часть элементной базы указана на схеме, но некоторые детали можно заменить.

Можно ли ставить не указанные в перечне элементы? Указаны только аналоги отечественного производства, но есть еще и импортная база. Только внимательнее с характеристиками при выборе замены.

Особенности монтажа

Для этого регулятора есть макет печатной платы (на рисунке ниже). Все детали размещаем на этой плате. Только резистор R4, который задает пределы регулировки, устанавливаем так, чтобы он был а корпусе. Конденсатор C1 крепим в горизонтальном положении, используя проволочные скобы остальные — без разницы.

Печатная плата к схеме регулятора паяльника на 20-36 В переменного напряжения

Параметры резисторов R2 и R3 подбираются в зависимости от желаемых пределов регулирования.

Для нормальной работы транзистор VT2 надо смонтировать на радиаторе. Площадь — 20-30 см², на плате отведено место под Г-образный радиатор.

На лицевой стороне корпуса или сверху кроме переменного резистора удобно установить розетку для подключения паяльника. Собственно, это все рекомендации по монтажу.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.

Преимущества регулировки температуры паяльника

  • Экономия электроэнергии;
  • Продление срока службы электроприбора;
  • При повышенной температуре жало покрывается окалиной, вы постоянно отвлекаетесь на его очистку. При этом уменьшается толщина металла – соответственно износ происходит быстрее;
  • Вы не испортите радиодетали, чувствительные к перегреву;
  • На монтажной плате не произойдет отслоение токоведущих дорожек от перегрева;
  • При смене припоя качество пайки останется на прежнем уровне;
  • Меньше дыма от перегретого флюса;
  • Вам не нужно менять паяльник при выполнении разных видов работ – просто смените температуру;

Популярное: как залудить жало паяльника Как правило, терморегулятором оснащаются приборы с блоком питания. Это дополнительный плюс – высокое напряжение с переменным током может вывести из строя некоторые типы микросхем по причине наводок.

  1. Простейшие двух диапазонные;

Имеют два фиксированных положения. Как правило, максимальная мощность используется для пайки, минимальная – для поддержания нагрева в перерывах между работой.

Сетевые с диммером;

В разрыв питающего кабеля, подключаемого к сети 220 вольт, включен обыкновенный диммер. Нагрев регулируется за счет падения напряжения. Одновременно с этим уменьшается мощность. Эффективность схемы низкая, как и стоимость.

Регулятор в корпусе;

Такими регуляторами оснащаются паяльники, имеющие сложную схему нагрева. Например – импульсные. Блок питания вместе с регулятором размещен в корпусе (ручке). Достаточно эффективная схема, инструмент удобен в работе, разумная стоимость. Вариантов с высокой мощностью нет.

Выносной блок питания;

Самая эффективная конструкция в среднем ценовом диапазоне. Имеется развязка с сетью 220 вольт, широкий диапазон и возможность точного регулирования температуры. Рассчитан на любую мощность. Недостаток – громоздкость. Впрочем, размер – не проблема.

Паяльная станция.

Настоящий комплекс с широкими возможностями для радиолюбителя. Имеет точную регулировку температуры жала и дополнительно термофен (опят же с регулятором). Сложная система управления находится в отдельном корпусе вместе с блоком питания. Нет ограничений по мощности, однако стоимость устройства достаточно большая.

Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)

Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.

Корпус подберите любой

Простые схемы на тиристоре

При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н

Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий

Проверен не раз

Этот вариант рабочий. Проверен не раз.

Схема регулятора температуры для паяльника на тиристоре

При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².

Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.

На других элементах но тоже без помех

Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.

Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации

Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.

На тиристоре с высокой чувствительностью

Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.

Популярные статьи Удобное видеонаблюдение онлайн через интернет с помощью камер

Регулятор мощности для паяльника без помех

Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).

Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.

Если собрали, но напряжение не регулируется

Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).

Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника

Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.

Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.

https://youtube.com/watch?v=gKzuD_SHBiY

https://youtube.com/watch?v=UvAO4UkXoIg

https://youtube.com/watch?v=x49VCMhWW_U

Принцип работы

Большинство приборов в основе работы используют преобразование электрической энергии в тепловую. Для этого во внутренней части устройства располагается нагревательный элемент. Но некоторые типы устройства просто нагреваются на огне или используют подожжённый направленный поток газа.

В нихромовых устройствах используется проволочная спираль, через которую пропускается ток. Спираль располагается на диэлектрике. Нагреваясь, спираль передаёт тепло медному жалу. Температура нагрева регулируется термодатчиком, который при достижении определённого значения нагрева отсоединяет спираль от электрической линии, а при остывании опять подключает её к ней. Термодатчиком является не что иное, как термопара.

Индукционное оборудование работает за счёт индуктора. Жало покрывается ферромагнетиком. С помощью катушки наводится магнитное поле и появляются в проводнике токи, приводящие к нагреву жала. При работе наступает такой момент, что жало теряет свои магнитные свойства, нагрев останавливается, а при остывании свойства возвращаются и нагрев восстанавливается.

Работа импульсных паяльников основана на использовании высокочастотного трансформатора. Вторичная обмотка трансформатора имеет несколько витков, выполненных из толстого провода, концы которого и являются нагревателями. Частотный преобразователь увеличивает частоту входного сигнала, который снижается на трансформаторе. Регулировка нагрева происходит при помощи регулировки мощности.

Термовоздушный паяльник, или, как его называют, термофен, при работе использует горячий воздух, который нагревается при прохождении через спираль, выполненную из нихрома. Температуру в нём можно регулировать как снижением величины напряжения подаваемого на проволоку, так и изменением потока воздуха.

Одним из видов паяльников стали устройства, использующие инфракрасное излучение. В основе их работы лежит процесс нагрева излучением с длиной волны до 10 мкм. Для регулирования применяется сложный узел управления, изменяющий как длину волны, так и её интенсивность.

Газовые представляют собой обычные горелки, вместо жала использующие сопла разного диаметра. Управление температурой практически невозможно, кроме изменения интенсивности выхода газа с помощью заслонки.

Инструменты и материалы

Несмотря на простоту конструкции, симисторный регулятор является радиоэлектронной схемой. Для изготовления такого прибора потребуются инструменты для механической обработки металла и пластмассы. При монтаже электроники придётся использовать уже имеющийся паяльник. Разумеется, для сборки даже самого простого регулятора мастер должен обладать некоторыми знаниями и навыками изготовления радиоконструкций.

Эта небольшая деталь должна надёжно работать при подключении нагрузки запланированной мощности, поэтому лучше купить более дорогую деталь с некоторым запасом мощности.

Схемы регуляторов настолько похожи, что подобрать детали поможет продавец-консультант прямо в магазине радиотоваров. Ещё проще найти на сайте магазина радиодеталей готовый комплект для сборки. В нём уже будут все нужные компоненты и инструкция по сборке.

Не менее важной деталью является корпус будущего регулятора. Он должен быть компактным, но вмещать все нужные элементы

Большое значение имеет удобство подключения потребителя. В качестве корпуса можно использовать готовую электромонтажную коробку со встроенной электророзеткой. В магазинах радиотоваров также продаются готовые корпуса для самоделок.

Ручка регулятора должна крепко держаться на оси переменного резистора, которым задаётся нужная температура. При этом материал ручки должен гарантировать изоляцию от напряжения бытовой электросети. Хорошо подходят ручки от старых радиоприёмников или электроприборов.

Потребуются и такие предметы:

  • провода, рассчитанные на подключение в сеть 220 В;
  • изолента;
  • винты и шурупы;
  • набор для пайки (припой, флюс, средство для отмывки паяных соединений).

Только учтите, что светодиодные или люминисцентные лампы для этого не годятся, потому что неправильно работают с простыми симисторными регуляторами напряжения.

Преобразователи на управляемых диодах

Каждый из возможных вариантов исполнения устройств отличается своей схемой и регулирующим элементом. Существуют схему регуляторов мощности на тиристорах, симисторах и другие варианты.

Тиристорные устройства

По своему схемному решению большинство известных блоков регулировки изготавливаются по тиристорной схеме с управлением от специально формируемого для этих целей напряжения.

Популярные статьи Осенний венок на дверь своими руками

Двухрежимная схема регулятора на тиристоре низкой мощности приводится на фото.

Посредством такого прибора удаётся управлять паяльниками, мощность которых не превышает 40 Ватт. Несмотря на небольшие габариты и отсутствие вентиляционного модуля преобразователь практически не греется при любом допустимом режиме работы.

Такое устройство может работать в двух режимах, один из которых соответствует состоянию ожидания. В этой ситуации ручка варьируемого по величине резистора R4 установлена в крайне правое по схеме положение, а тиристор VS2 полностью закрыт.

Питание поступает на паяльник через цепочку с диодом VD4, на котором величина напряжения снижается примерно до 110 Вольт.

Во втором режиме работы регулятор напряжения (R4) выводится из крайне правой позиции; причём в среднем его положении тиристор VS2 немного приоткрывается и начинает пропускать переменный ток.

Переход в это состояние сопровождается зажиганием индикатора VD6, срабатывающего при выходном питающем напряжении порядка 150 Вольт.

Путём дальнейшего вращения ручки регулятора R4 можно будет плавно увеличивать мощность на выходе, поднимая его выходной уровень до максимальной величины (220 Вольт).

Симисторные преобразователи

Ещё один способ организации управления паяльником предполагает применение электронной схемы, построенной на симисторе и также рассчитанной на нагрузку небольшой мощности.

Эта схема работает по принципу снижения эффективного значения напряжения на полупроводниковом выпрямителе, к которому подключается полезная нагрузка (паяльник).

Состояние регулировочного симистора зависит от положения «движка» переменного резистора R1, меняющего потенциал на его управляющем входе. При полностью открытом полупроводниковом приборе поступающая в паяльник мощность снижается примерно в два раза.

Простейший вариант управления

Самый простой регулятор напряжения, являющийся «усечённым» вариантом двух рассмотренных выше схем, предполагает механическое управление мощностью в паяльнике.

Такой регулятор мощности востребован в условиях, когда предполагаются длительные перерывы в работе и не имеет смысла держать паяльник всё время включённым.

В разомкнутом положении выключателя на него поступает небольшое по амплитуде напряжение (примерно 110 Вольт), обеспечивающее невысокую температуру нагрева жала.

Для приведения устройства в рабочее состояние достаточно включить тумблер S1, после чего наконечник паяльника быстро нагревается до требуемой температуры, и можно будет продолжить пайку.

Такой терморегулятор для паяльника позволяет в промежутках между пайками снижать температуру жала до минимального значения. Эта возможность обеспечивает замедление окислительных процессов в материале наконечника и заметно продлевает срок его эксплуатации.

Паяльники с жалами Hakko

Эти паяльники, как правило, выпускаются с простым тиристорным регулятором температуры.


По сравнению с предыдущим паяльником, у этого выбор жал намного богаче.


Такие жала называют типа Hakko 936. И на Alixepress продаются паяльники с такими жалами, хотя чаще всего с компанией Hakko представленная продукция не имеет ничего общего.

Это вечные жала. Такие жала способны прослужить долгое время, в отличие от медных, но они требуют особого ухода. Их нельзя чистить наждачной или лезвием, нежелательно паять кислотой.


По сравнению с классическим медным жалом, Hakko 936 полое. Не нужно тратить много времени и энергии для разогрева. Да и температура регулируется лучше и быстрее.

Но и тут не обошлось без проблем. Представленный выше паяльник обладает самым простым тиристорным регулятором. Он не может качественно и быстро регулировать температуру паяльника. И к тому же. такие паяльники имеют большой разброс по температуре. Например, вы выставили 300 ℃, а по факту на жале 360 ℃. Это недопустимо.

Поэтому, разберем еще одного представителя такого типа паяльников.

Это паяльник от станции Lukey 702.


У него регулировка температуры идет за счет микроконтроллера станции в блоке управления.


В целом, температура регулируется лучше по сравнению с предыдущим паяльником, но теперь главная проблема в конструкции.


И у того паяльника и у этого температура неравномерно распределяется по жалу. Она может быть реальна по центру жала, но не на всей площади. Это огромная проблема и недостаток конструкции. И этот недостаток мешает всей пайке. Начинают слипаться контакты, плохо лудятся провода.

Вся проблема в воздушной прослойке между жалом и нагревателем. Она плохо передает температуру от нагревателя к жалу. И некоторые радиолюбители засыпают это пространство песком, чтобы температура лучше распределялась по жалу.

И это тоже не решение проблемы. Как тогда менять жала? Каждый раз засыпать песок в жало? Это не выход.

Медные жала снова в строю

Есть выход из этой ситуации. Это медные жала. Да, они выгорают, они не долговечны, однако на их поверхности температура распределяется намного лучше, чем у вечных жал. Еще один способ поддерживать температуру во время пайки с такими паяльниками — это использование верхнего подогрева.


С помощью паяльного фена можно подогревать поверхность на 100 ℃, тем самым стабилизируя температуру пайки и поверхности платы.

Такими паяльниками можно паять детали, платы, но это не лучший выбор для новичков. С таким инструментом придется долго учиться, понимать процессы пайки и тратить много время на обучение.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)

Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.

Корпус подберите любой

Простые схемы на тиристоре

При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н

Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий

Проверен не раз

Этот вариант рабочий. Проверен не раз.

Схема регулятора температуры для паяльника на тиристоре

При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².

Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.

На других элементах но тоже без помех

Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.

Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации

Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.

На тиристоре с высокой чувствительностью

Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.

Популярные статьи Японский мак

Регулятор мощности для паяльника без помех

Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).

Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.

Если собрали, но напряжение не регулируется

Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).

Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника

Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.

Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.

Основы пайки феном

Прежде, чем начать проектировать самодельный паяльный фен, следует ознакомиться с основными методами использования данного инструмента.

Чертеж паяльного фена.

Термофен для пайки, как правило, может понадобиться в таких случаях:

  1. Пайка очень маленьких деталей в SMD корпусах.
    Большинство мелких радиодеталей не поддаются пайке паяльником. Для монтажа подобных компонентов необходимо залудить место посадки, смазать его флюсом и расположить микросхему. После этого можно смело начать нагрев монтажных контактов при помощи фена, до того момента пока припой под компонентом не расплавится, и он не сядет на печатную плату.
  2. Отсутствие свободного места для использования паяльника.
    При очень плотной компоновке элементов на печатной плате использование паяльника существенно затруднено. В этом случае термофен – это лучший вариант для радиолюбителя.
  3. Ремонтные работы, связанные с мобильными телефонами или планшетными компьютерами.
    Большинство современный гаджетов практически невозможно разобрать без использования термофена. Например, замена экрана на любом телефоне требует предварительного прогрева старой матрицы при помощи термофена. Серьезный нагрев нейтрализует клей и позволяет отделить экран от корпуса устройства.
  4. Снятие BGA чипов с посадочных площадок.
    Работы по реболу и прогреву современных видеочипов производятся при помощи паяльного термофена.

Управление температурой и плотностью потока воздуха, как правило, осуществляется при помощи кнопок на термофене.

Процесс пайки

  • нанесение припоя или паяльной пасты на место предполагаемого монтажа;
  • установка микросхемы на посадочное место;
  • прогрев монтажных контактов при помощи паяльного термофена.

Для того, чтобы обезопасить близлежащие компоненты от нагрева, следует наложить на них специальные экраны из алюминиевой фольги.

После проведения работ следует проверить качество пропая всех контактов при помощи иголки.

Демонтаж элемента при помощи фена еще проще. Для снятие неисправной микросхемы необходимо:

  • равномерно прогреть все контакты;
  • аккуратно снять элемент при помощи пинцета или присоски.

Во время нагрева поверхности при помощи термофена необходимо совершать круговые движения. Такая методика позволяет избежать локального перегрева платы и нарушения ее геометрии.