КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ
Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:
- выпрямление входного напряжения;
- инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
- трансформация высокочастотных импульсов до требуемого уровня;
- выпрямление и фильтрация полученного напряжения.
Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).
Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.
Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.
Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.
Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.
Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.
Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.
Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.
Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.
Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.
Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера
Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.. Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности
Таким образом, скважность изменяется от 0 до 1.
Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.. Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь
Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов
Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:
- малые габариты и вес по сравнению с трансформаторными источниками питания;
- схемотехническая простота, обусловленная применением интегральных электронных компонентов;
- возможность работы в широком диапазоне изменения значений входного напряжения.
Устройство источника дежурного напряжения
Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.
Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.
Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).
Напряжение ИДН должно находиться в пределах 4,75 — 5,25 В. Если оно будет меньше — основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.
Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.
Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара.
Оптопара содержит источник и приемник излучения. В блоках питания чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.
Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.
В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.
С вами был Виктор Геронда.
До встречи на блоге!
P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!
Ремонт телевизора
О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:
проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
разборка телевизионного приемника и освобождение электронной платы;
осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.
Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов. К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.
В практике ремонта имеют место случаи, когда модуль питания не работает (не запускается) а предохранитель не сгорел. Это может свидетельствовать о пробое (перегорании) транзистора генератора высокочастотных импульсов.
Наиболее частыми причинами неработоспособности телевизионных блоков является:
- обрыв балластных сопротивлений;
- неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
- неисправность конденсаторов фильтров вторичного напряжения;
- пробой или перегорание выпрямительных диодов.
Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.
Здесь возможны несколько вариантов поведения отремонтированного устройства:
- Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
- Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:
- пробит один из диодов выпрямительного моста;
- велика утечка конденсатор (конденсатор «состарился»).
Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.
- Если свечение лампочки велико, необходимо тут же отключить модуль питания от сети и заново провести проверку всех электронных деталей.
Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.
Как выбрать качественный блок питания?
Конечно, о блоках питания не так интересно читать, как, например, о видеокартах. Однако, когда в этом появляется необходимость, то на помощь приходят обзоры, обзоры и еще раз обзоры.
Ниже мы дадим некоторые рекомендации, на что стоит обращать внимание при детальном изучении компьютерных «кормильцев». Прежде всего, у вас должна быть определенная степень доверия к конкретному производителю
Наибольшей популярностью в нашей стране пользуются недорогие изделия компаний FSP, Corsair, Hiper, Chieftec, cooler Master, Thermaltake. К категории High-end относятся такие производители, как Enermax, Antec, SeaSonic, be quiet!
Важно не следовать на поводу у «брендовых предрассудков», а обращать внимание на действительно качественный продукт. Ведь неудачи случаются абсолютно у всех производителей
И высококачественные линейки, о которых потом чуть ли не слагают легенды, тоже «случаются» у многих.
Камрад, рассмотри датагорские рекомендации
Внимание! 800 рублей для новичков на Aliexpress Регистрируйтесь по нашей ссылке. Если вы впервые на Aliexpress — получите 800.00₽ купонами на свой первый заказ..
Цифровой осциллограф DSO138
Кит для сборки
Цифровой осциллограф DSO138. Кит для сборки
Функциональный генератор. Кит для сборки
Настраиваемый держатель для удобной пайки печатных плат
Константин (riswel)
Россия, г. Калининград
Список всех статей
Профиль riswel
C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих. За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования. Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов. Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.
Проверка блока питания
Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. Рассмотрим типовую процедуру проверки снятого с компьютера БП:
- Подключите к выводам +3,3В, +5В и +12В мощные нагрузочные резисторы, рассчитанные на ток около 1А и соответствующую мощность. Это нужно для избежания неправильной работы некоторых блоков без нагрузки.
- Подайте на блок сетевое питание.
- Проверьте наличие напряжения на линии +5VSB. Оно должно возникать непосредственно после включения блока в сеть.
- Замкните вывод PS-ON на корпус БП. При этом на силовых выходах БП и выводе PG должны установиться соответствующие напряжения.
Возможные варианты неисправностей:
При включении питания отсутствует дежурное напряжение. Если при этом БП запускается и генерирует управляемые напряжения, проверьте работоспособность импульсного преобразователя дежурного напряжения (наличие импульсов на первичной обмотке его трансформатора), исправность выпрямителя (наличие постоянного напряжения не менее 9В на входе микросхемы 7805) и работоспособность стабилизатора (на выходе микросхемы 7805 должно быть +5В). Если присутствует дежурное напряжение, но БП не запускается, попробуйте принудительно запустить ШИМ-контроллер следующим образом:
При отсутствии генерации импульсов на обозначенных ножках микросхемы потребуется ее замена
В противном случае следует обратить внимание на выходной каскад преобразователя, особенно – коммутирующие транзисторы. Если нет дежурного напряжения и БП не запускается, последовательно проверьте входной выпрямитель: целостность предохранителя и терморезистора, отсутствие обрывов в обмотках дросселей. Однако наиболее часто встречающаяся неисправность – это выгорание диодного моста в результате короткого замыкания в конденсаторе фильтра
Это будет сразу заметно и по характерному запаху, и по сгоревшим диодам. Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи
Однако наиболее часто встречающаяся неисправность – это выгорание диодного моста в результате короткого замыкания в конденсаторе фильтра. Это будет сразу заметно и по характерному запаху, и по сгоревшим диодам
Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи
Конструкционные компоненты
В состав блока питания включены три каскада – входной, выходной и преобразователь. Следует разобрать более детально, как устроен каждый и для чего он предназначен.
Входные цепи
Сюда входят такие блоки:
- Входной фильтр, который отсекает импульсные помехи, не давая им распространяться далее. Также он снижает разряд конденсаторов, который возникает при включении устройства в сеть.
- Корректор мощности снижает нагрузку на питающие цепи.
- Переменное напряжение постоянно трансформирует выпрямительный мост.
- Пульсации выпрямленного напряжения сглаживает конденсаторный фильтр.
БП небольшой мощности, который выдает +5 В для поддержки дежурного режима материнки и +12 В для микросхемы преобразователя.
Преобразователь
Состоит из следующих элементов:
- Двух биполярных транзисторов, которые используются в качестве полумостового преобразователя.
- Схемы защиты от изменения питающих напряжений. В этом качестве обычно выступает специфическая микросхема, например SG6105 или UC
- Высокочастотного импульсного трансформатора, формирующий напряжения требуемого номинала.
- Цепей обратной связи, поддерживающих стабильное напряжение на выходе БП.
- Формирователя напряжения, реализованного на базе отдельного операционного усилителя.
Выходные цепи
Для их нормальной работы необходимы такие составляющие:
- Выходные выпрямители, которые используются для подачи напряжения 5 В и 12 В с положительными и отрицательными значениями, с помощью одних и тех же обмоток трансформатора.
- Дроссель групповой стабилизации. Сглаживает импульсы и перераспределяет энергию между остальными цепями.
- Фильтрующие конденсаторы, интегрирующие импульсы, необходимые для получения номинальных напряжений.
- Нагрузочные резисторы, обеспечивающие безопасную работу на холостом ходу.
Назначение БП
Его главной функцией является обеспечение электропитания, требующегося для работы всех частей компьютера. Основное напряжение обычно составляет +12 В., +5 В., а также бывает и напряжение -12 В., -5 В. Еще одно назначение БП — это выполнение гальванической развязки между сетью и элементами ПК. Это требуется для того, чтобы устранить токи утечек, благодаря чему во время эксплуатации прибор не бьется током и не допускает возникновения паразитных токов при работе с сопряженным оборудованием.
Чтобы выполнить гальваническую развязку, требуется использовать трансформатор, который обладает необходимым числом обмоток. При этом сегодня для питания современных ПК требуется достаточно большая мощность. Вот почему, чтобы сделать это, пришлось бы применять трансформатор, который бы много весил и был бы некомпактный по размеру . Но благодаря тому, что с ростом частоты тока питания трансформатора для образования такого же магнитного потока понадобится меньшее число витков с меньшим сечением примененного магнитопровода, БП, созданные с помощью преобразователя, оказываются небольшие и легкие.
Стабилизация вторичных напряжений.
Оптопара
выполняет две функции: – передаёт сигнал обратной связи по напряжению от схемы сравнения напряжения вторичной цепи к схеме управления ШИМ в первичной цепи блока питания; – обеспечивает гальваническую развязку (как и трансформатор) вторичных цепей блока питания от первичных цепей (напряжения сети).
Схема стабилизации вторичного напряжения импульсного блока питания работает следующим образом:
Выпрямленное вторичное напряжение подаётся на делитель, средняя точка которого подключена к схеме сравнения.
- Схема увеличивает ток светодиода оптопары при напряжении на входе более 2,5 В, приоткрывается транзистор оптопары и таким образом уменьшается продолжительность управляющих импульсов от схемы управления к силовому транзистору. Цепь этих событий приводит к снижению вторичного напряжения.
- Соответственно схема сравнения уменьшает ток светодиода оптопары при снижении напряжения на входе ниже 2,5 В, что приводит к запиранию транзистора оптопары и увеличению длительности управляющих импульсов от схемы управления к силовому транзистору. Что в итоге приводит к увеличению вторичного напряжения.
В схемах с несколькими вторичными напряжениями схема стабилизации контролирует одно (реже два) вторичное напряжение и по нему (им) регулирует всю группу выходных напряжений. Высыхание ёмкости в той цепи, по которой производится стабилизация всей группы выходных напряжений приводит к увеличению напряжения во всех вторичных цепях. Высыхание ёмкости в любой другой вторичной цепи приводит к снижению напряжения только в этой цепи.
Схемы ИБП с описанием назначения элементов
здесь .Схема и принцип действия зарядного устройства HUAWEI здесь
Принцип действия импульсных блоков питания
Ремонт блоков питания спутниковых тюнеров
Зарядное устройство из блока питания ноутбука.
- Заряд аккумулятора постоянным током, напряжение на батарее растёт, до величины 14,4 В (2,4 В на банку)
- Заряд аккумулятора постоянным напряжением 14,4 В (при этом ток заряда постепенно снижается и при 100% заряде близок к 0)
Зарядное устройство из блока питания и ARDUINO.
Устройство заряжает АКБ до 100%, а если был выбран режим тест – разряжает АКБ до уровня 0% и высчитывает величину ёмкости, которую батарея смогла отдать в нагрузку. После окончания теста АКБ опять заряжается до уровня 100%.
Ремонт компьтерного блока питания Q-DION
Huawei 050055E1W
Зарядное устройство для сотового телефона НUAWEI. Схема и описание принципа действия.
Стилус графического планшета TRUST TB-6300
YKF25225-2 представляет из себя генератор, собранный по схеме емкостной трёхточки. Активным элементом генератора является транзистор Q1.
2m 5mm digital USB цифровой эндоскоп с Aliexpress.com
USB 500 X 2 Мп цифровой микроскоп на Aliexpress.com
Установил с диска, который шёл с микроскопом программу. Она мне не понравилась.
Запустил программу видеопроигрывателя, выбрал источник видеосигнала ВЕБ-камера. Микроскоп соединился без проблем.
Главная >> Электроника >> Принцип действия импульсных блоков питания
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Читать также: Труба гнз что это
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Ремонт импульсного блока питания
Большинство современной бытовой электронной аппаратуры имеет в своей конструкции самостоятельные или расположенные на отдельной плате электронные модули понижающие и выпрямляющие сетевое напряжение.
Причём последние 20 лет, вместо традиционных понижающе-выпрямительных схем на основе силового трансформатора и диодного моста, они построены по схеме импульсного преобразования напряжения. Несмотря на их высокую схемотехническую надежность они достаточно часто выходят из строя.
Причин здесь несколько, но основными из них являются:
- Общее описание бытового импульсного питающего устройства ↓
- Диагностирование и простейший ремонт ↓
- Ремонт стандартных устройств ↓
- Ремонт телевизора ↓
- Ремонт питающего устройства настольного компьютера ↓
- колебания сетевого напряжения, на которые не рассчитаны эти понижающе-выпрямительные устройства;
- несоблюдение правил эксплуатации;
- подключение нагрузки, на которую не рассчитаны приборы.
Конечно бывает очень обидно, когда необходимо выполнить срочную работу, а модуль питания у компьютера неисправен или во время просмотра любимой телепередачи это устройство выходит из строя.
Не стоит сразу впадать в панику и обращаться в ремонтную мастерскую или спешить в супермаркет электроники за приобретением нового блока. Часто причины неработоспособности настолько тривиальны, что устранить их можно дома, с минимальными затратами финансовых средств и нервов.
Как работает инвертор?
ВЧ модуляцию, можно сделать тремя способами:
- частотно-импульсным;
- фазо-импульсным;
- широтно-импульсным.
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналов
Алгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ
Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.
Длительная работа при пониженном входном напряжении вызывает перегрев и тепловой пробой ключевых транзисторов, поскольку, чем ниже напряжение на входе, тем больше время открытия ключей для получения нужного напряжения на выходе трансформатора.
Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.
Наиболее часто неисправности импульсных блоков питания вызываются:
- выходом из строя диодов выпрямительного моста;
- электролитических конденсаторов сглаживающего фильтра;
- ключевых транзисторов.
Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.
Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.
Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.
Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов.
Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.
В некоторых случаях конденсаторы могут вызывать срабатывание защиты. Внешне неисправные конденсаторы могут иметь вздутие на торцах корпуса. Такие элементы следует менять на исправные, не тратя время на их проверку.
Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.
Внимание!
Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.
Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.
Для исключения попадания электромагнитных помех в питающую сеть, на входе блока обычно ставят помехоподавляющий фильтр, элементы которого соединены непосредственно с экранирующим кожухом. Таким образом, кожух оказывается гальванически связан с проводами питающей сети.
При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.
Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.
2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Разновидности импульсных БП
По большому счёту классификация ИБП может включать немало схем, но мы рассмотрим только две из их:
- бестрансформаторные импульсные устройства;
- трансформаторные ИБП.
Мы уже рассматривали, чем отличается импульсный инвертор от обычного трансформаторного блока питания. Теперь можно рассказать об отличиях между этими двумя разновидностями импульсных преобразователей.
В бестрансформаторных ИБП высокочастотные импульсы следуют на выходной выпрямитель, и далее – на оконечную компоненту, сглаживающий фильтр. Основное достоинство такой схемы – простота конструкции. Большую роль здесь играет широтно-импульсный генератор, представляющий собой специализированную микросхему.
Главный минус таких устройств – отсутствие гальванической развязки, то есть обратной связи с питающей цепочкой. По этой причине уровень безопасности бестрансформаторных блоков не так высок – существует опасность поражения электрическим током высокой частоты. Поэтому блоки питания такого типа делают маломощными.
Трансформаторные БП более распространены. Здесь присутствует гальваническая развязка: высокочастотные импульсы подаются на трансформаторный блок, на первичную обмотку, при этом количество вторичных обмоток неограниченно. Другими словами, выходных напряжений может быть много, при этом каждая вторичная обмотка содержит собственную пару выпрямитель – фильтр. К КПД такого импульсного блока питания претензий нет, уровень безопасности – высокий. Неслучайно в компьютерах используют именно этот тип. Здесь для подачи сигнала на трансформатор по гальванической развязке используется напряжение номиналом 5/12 В, поскольку уровень точности и стабильности для работы компонентов ПК требуется очень высокий.
В числе основных отличий импульсного блока питания от классического трансформаторного является использование высокочастотных импульсов вместо стандартных 50 Гц. Такое решение позволило использовать ферромагнитные сплавы вместо электротехнических разновидностей железа. Они обладают высокой коэрцитивной силой, что предоставило возможность многократно уменьшить вес и размеры трансформаторной части и всего устройства.
Использование инверторных схем существенно упростило задачу преобразования напряжения и тока, хотя схематически ИБП намного сложнее трансформаторных аналогов.
Источник дежурного напряжения
В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).
Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.
Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.
Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.
В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.
Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением. Электролит в них подсыхает, срок службы уменьшается.
Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.
Выбор — удобство или надежность — за вами, уважаемый читатели.