Принцип работы полевого транзистора

Содержание

Транзистор полевой

Первоначально определимся с терминологией. Полевой транзистор является полупроводниковым прибором, через который движется поток носителей зарядов. Он регулируется электрическим полем поперечного типа, которое, в свою очередь, создаётся напряжением, что приложено между стоком и затвором или истоком и затвором. Благодаря тому, что принцип функционирования полевых транзисторов базируется на перемещении основных носителей однотипного заряда (дырок или электронов), их называют униполярными.

На практике чаще всего используются схема включения транзистора с общим эмиттером. Дело в том, что использование в первую очередь истока позволяет получить значительное усиление тока и мощности. При этом, когда используется схема включения транзистора с общей базой, не увеличивается показатель тока. Поэтому показатель мощности увеличивается значительно меньше, чем в случае с эмиттером. Также при ставке на базу необходимо понимать, что схема тогда имеет низкий показатель входного сопротивления. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике. Что ж, начнём рассматривать схемы включения полевых транзисторов.

Канал полевого JFET-транзистора

В этом случае, как вы видите на рисунке выше, запрещенный слой увеличивается в глубину бруска и начинает перекрывать дорогу электронам. В результате получается, что ширина “тротуара” для электронов стает меньше, и только некоторые электроны могут достичь назначенной цели, то есть СТОКА. Этот “тротуар” в полевом транзисторе называют каналом.

Так как у нас брусок сделан из N-полупроводника, следовательно и канал тоже у нас N-проводимости. Следовательно, такой  полевой транзистор называется N-канальным полевым транзистором с управляющим P-N переходом. На буржуйский манер это звучит как Junction Field-Effect-Transistors или просто JFET. Также неплохо было бы запомнить английские название выводов: Drain – сток, Source – исток, Gate – затвор.

А что будет, если на Bat2 мы еще больше добавим напряжения? То есть мы сделаем так, чтобы U2>U1. В этом случае у нас запирающий слой еще больше уйдет в брусок. Канал станет еще тоньше. Следовательно, увеличится сопротивление канала, что в свою очередь вызовет уменьшение силы тока через канал:

Если мы еще увеличим напряжение (U3>U2), то заметим, что при каком-то напряжении U3 у нас вообще перестанет течь ток через канал. Запирающий слой ПОЛНОСТЬЮ его перекроет:

Все, приехали… В этом случае мы ПОЛНОСТЬЮ перекрыли канал для дальнейшего движения электронов. А раз движуха электронов закончилась, то  откуда взяться электрическому току?  Ведь электрический ток – упорядоченное движение заряженных частиц, не так ли? Поэтому через исток-сток электрический бежать не будет.

Преимущества и недостатки

Преимущества и недостатки являются условными понятиями, взятыми из сравнения полевых и биполярных транзисторов. Одним из свойств ПТ является высокое сопротивление Rвх. Причем у MOFSET его значение на несколько порядков выше, чем у JFET. ПТ практически не потребляют ток у источника сигнала, который нужно усилить.

Например, если взять обыкновенную схему, генерирующую сигнал на базе микросхемы-микроконтроллера. Эта схема управляет работой электродвигателя, но обладает низким значением тока, которого недостаточно для этих целей. В этом случае необходим усилитель, потребляющий малое количества I и генерирующий на выходе ток высокой величины. В усилителе такого типа и следует применить JFET, обладающий высоким Rвх. JFET обладает низким коэффициентом усиления по U. При построении усилителя на JFET (1 шт.) максимальный коэффициент усиления будет около 20, при использовании биполярного — несколько сотен.

В усилителях высокого качества применяются оба типа транзистора. При помощи ПТ происходит усиление по I, а затем, при помощи биполярного происходит усиление сигнала по U. Однако ПТ обладают рядом преимуществ перед биполярными. Эти преимущества заключаются в следующем:

  1. Высокое Rвх, благодаря которому происходит минимальное потребление I и U.
  2. Высокое усиление по I.
  3. Надежность работы и помехоустойчивость: при отсутствии протекания I через затвор, в результате чего управляющая цепь затвора изолирована от стока и истока.
  4. Высокое быстродействие перехода из одного состояния в другое, что позволяет применять ПТ на высоких частотах.

https://youtube.com/watch?v=FI3RNYDoSBU

Кроме того, несмотря на широкое применение, ПТ обладают несколькими недостатками, не позволяющими полностью вытеснить с рынка биполярные транзисторы. К недостаткам относятся следующие:

  1. Повышенное падение U.
  2. Температура разрушения прибора.
  3. Потребление большего количества энергии на высоких частотах.
  4. Возникновение паразитного транзистора биполярного типа (ПБТ).
  5. Чувствительность к статическому электричеству.

Повышенное падение U возникает из-за высокого R между стоком и истоком во время открытого состояния. ПТ разрушается при превышении температуры по Цельсию 150 градусов, а биполярный — 200. ПТ обладает низким энергопотреблением только на низких частотах. При превышении частоты 1,6 ГГц энергопотребление возрастает по экспоненте. Исходя из этого, частоты микропроцессоров перестали расти, а делается упор на создании машин с большим количеством ядер.

При использовании мощного ПТ в его структуре образовывается ПБТ, при открытии которого ПТ выходит из строя. Для решения этой проблемы подложку закорачивают с И. Однако это не решает проблему полностью, так как при скачке U может произойти открытие ПБТ и выход из строя ПТ, а также цепочки из деталей, которые подключены к нему.

https://youtube.com/watch?v=A9nfdOsKkUQ

Существенным недостатком ПТ является чувствительность к статическому электричеству. Этот недостаток исходит от конструктивной особенности ПТ. Слой диэлектрика (изоляционный) тонкий, и его очень легко разрушить при помощи заряда статического электричества, который может достигать сотен или тысяч вольт. Для предотвращения выхода из строя при воздействии статического электричества предусмотрено заземление подложки и закорачивание ее с истоком. Кроме того, в некоторых типах ПТ между стоком и истоком стоит диод. При работе с интегральными микросхемами на ПТ следует применять антистатические меры: специальные браслеты и транспортировка в вакуумных антистатических упаковках.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Виды транзисторов

Каждая из ветвей отличается на 0.
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.
Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.

Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.

Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.

Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.
Защита от переполюсовки на основе полевого транзистора

https://youtube.com/watch?v=-pzkD0v3stM

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки — арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

  1. Отсутствие негативных явлений на стыке с каналом, истоком, стоком: светочувствительность, паразитное управление по подложке, гистерезис параметров.
  2. Термостабильность в процессе технологических циклов изготовления изделия: устойчивость к отжигу, эпитаксии. Отсутствие диффузии примесей в активные слои, вызванной этим деградации.
  3. Минимум примесей. Требование тесно связано с предыдущим.
  4. Качественная кристаллическая решетка, минимум дефектов.

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Что такое запирающий слой

Область, которая возникает между этими зарядами, называется запирающим слоем. Его также называют обедненным, от слова “бедный”, так как в нем нет основных носителей. Как вы помните, основные носители в N полупроводнике – это электроны, а в P полупроводнике – дырки. А раз нет свободных зарядов, то и электрический ток течь не может, так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц в одном направлении. Получается, эта область по сути стает диэлектриком, то есть областью, которая не проводит электрический ток.

Ну а теперь самое интересное. Оказывается, мы можем управлять толщиной этого запирающего слоя! Для этого достаточно увеличить напряженность электрического поля с помощью источника питания, то есть увеличить подаваемое напряжение, соблюдая необходимую полярность. Плюс источника напряжения подаем на N полупроводник, а минус источника – на P полупроводник.

Вот что у нас получится:

Электроны стремятся всей толпой к плюсовой клемме батареи, а дырки – к минусовой. В результате этого, запирающий слой стает намного шире. Это равносильно тому, что мы подаем обратное смещение на P-N переход. Чем больше напряжения мы подаем на P и N полупроводник, тем больше ширина запирающего слоя. Все элементарно и просто 😉

Если бы мы подали на P полупроводник  плюс, а на N  – минус, то у нас бы запирающий слой равнялся бы нулю и электрический ток прошел бы беспрепятственно через P-N переход. Как вы помните, это называется прямым включением P-N перехода. Но в этом случае мы должны подать напряжение больше, чем контактная разность потенциалов на границе переходов. Она равняется 0,6-0,7 Вольт, если используется материал кремний. Как только напряжение стает больше, чем 0,6-0,7 Вольт, начинается движение электрических зарядов. Диффузия усиливается еще тем, что электроны бегут к плюсовой клемме, а дырки – к минусовой.

Полевой транзистор с изолированным затвором

Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с затвором на основе перехода как по своей конструкции, так и по принципу работы. Обычно в полевых транзисторах с изолированным затвором, как это видно из их названия, затвор изолируется от основного корпуса транзистора тонким слоем окиси металла или каким-нибудь другим изолирующим материалом. Транзисторы этого типа, в которых в качестве изолятора использована окись металла, часто называют полевыми транзисторами со структурой металл-оксид-полупроводник.

Изоляция затвора в этих транзисторах от их основной части обеспечивает им двойное преимущество по сравнению с полевыми транзисторами с затвором на основе перехода. Одно из этих преимуществ заключается в том, что подобная изоляция предотвращает движение тока через затвор независимо от полярности, подаваемого на затвор потенциала. А это, в свою очередь, создает второе преимущество, которое состоит в том, что эти транзисторы могут действовать постоянно, независимо от того подается ли на затвор положительный или отрицательный потенциал.

Схема полевого транзистора с изолированным затвором

Что такое сток, исток и затвор

Полевой транзистор имеет три вывода. Вывод, с которого начинают свой путь электроны (основные носители) называется ИСТОКОМ. От слова “источник”. В разговорной речи мы источником называем родник, из которого бьет чистая вода. Поэтому нетрудно будет запомнить, что ИСТОК – это тот вывод, откуда начинают свой путь основные носители заряда. В данном случае это электроны. Место, куда они стекаются, называются СТОКОМ.

Эти два понятия нетрудно будет запомнить, если вспомнить водосточную систему с крыш ваших домов.

Истоком будет труба, которая собирает всю капли дождя с шифера или профнастила

А стоком будет конец  трубы, из которой вся дождевая вода будет выбегать на землю:

Но опять же, не забывайте, что мы говорим об электронах! А электроны бегут к плюсу. То есть по-нашенски получается что на СТОК мы подаем плюс, а на ИСТОК – минус.

А для чего нужен третий вывод?

Так, а давайте по приколу где-нибудь обрежем нашу водосточную трубу и воткнем туда вот такой прибамбас:

Называется он дисковым затвором. Чего бы мы добились, если бы воткнули этот дисковый затвор в нашу водосточную трубу? Да покрутив за баранку, мы могли бы регулировать поток воды! Мы можем вообще полностью перекрыть трубу, тогда в этом случае на стоке не стоит ждать дождевую водичку. А можем открыть наполовину, и регулировать поток воды со стока, чтобы при ливне у нас поток воды не смыл грядки и не сделал большую яму в земле. Удобно? Удобно.

Так вот, третий вывод полевого транзистора, который соединяется с P полупроводником называется тоже ЗАТВОРОМ и служит как раз для того, чтобы регулировать силу тока в бруске, через который бежит электрический ток 😉 Для этого достаточно подать на него напряжение, чтобы P-N переход был включен в обратном направлении, то есть в нашем случае подать МИНУС относительно ИСТОКА. Вся картина в целом будет выглядеть как-то вот так:

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Достоинства и недостатки полевых транзисторов

Использование полевых транзисторов благодаря их универсальным характеристикам позволило обойти другие виды транзисторов. Они широко применяются для интегральной схемы в качестве выключателя.

Достоинства:

  • каскады детали расходуют малое количество энергии;
  • показатели усиления превышают, значения других аналогичных устройств;
  • достижение высокой помехоустойчивости осуществляется за счет того, что отсутствует ток в затворе;
  • обладают более высокой скоростью включения и выключения, работают с недоступными для других транзисторов частотами.

Недостатки:

  • менее устойчивы к высоким температурам, которые приводят к разрушению;
  • на частотах более 1,5 ГГц, количество потребляемой энергии стремительно увеличивается;
  • чувствительны к статическим видам электричества.

Благодаря характеристикам, которыми обладают полупроводниковые материалы, взятые в качестве основы для полевого транзистора, позволяют использовать устройство в бытовой и производственной сфере. Полевыми транзисторами оснащается различная бытовая техника, которая используется современным человеком.

Что такое запирающий слой

Область, которая возникает между этими зарядами, называется запирающим слоем. Его также называют обедненным, от слова “бедный”, так как в нем нет основных носителей. Как вы помните, основные носители в N полупроводнике – это электроны, а в P полупроводнике – дырки. А раз нет свободных зарядов, то и электрический ток течь не может, так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц в одном направлении. Получается, эта область по сути стает диэлектриком , то есть областью, которая не проводит электрический ток.

Ну а теперь самое интересное. Оказывается, мы можем управлять толщиной этого запирающего слоя! Для этого достаточно увеличить напряженность электрического поля с помощью источника питания, то есть увеличить подаваемое напряжение, соблюдая необходимую полярность. Плюс источника напряжения подаем на N полупроводник, а минус источника – на P полупроводник.

Вот что у нас получится:

Электроны стремятся всей толпой к плюсовой клемме батареи, а дырки – к минусовой. В результате этого, запирающий слой стает намного шире. Это равносильно тому, что мы подаем обратное смещение на P-N переход. Чем больше напряжения мы подаем на P и N полупроводник, тем больше ширина запирающего слоя. Все элементарно и просто

Если бы мы подали на P полупроводник плюс, а на N – минус, то у нас бы запирающий слой равнялся бы нулю и электрический ток прошел бы беспрепятственно через P-N переход. Как вы помните, это называется прямым включением P-N перехода. Но в этом случае мы должны подать напряжение больше, чем контактная разность потенциалов на границе переходов. Она равняется 0,6-0,7 Вольт, если используется материал кремний. Как только напряжение стает больше, чем 0,6-0,7 Вольт, начинается движение электрических зарядов. Диффузия усиливается еще тем, что электроны бегут к плюсовой клемме, а дырки – к минусовой.