Коллекторный электродвигатель постоянного тока

Содержание

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы — в переключателе \рис.4\.

В этом примере, в зависимости от переключения позиции, будет изменяться направление вращения ротора электродвигателя, работа осуществляется с постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя, можно воспользоваться симисторным регулятором скорости вращения. Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению, — учитывается подключаемая нагрузка \мощность потребителя электрической энергии\.

Мощность потребителя, как наглядно видно из формулы \рис.5\, это произведение силы тока и напряжения. Для чего вообще необходимо проводить преварительные вычисления? Нагрузка, как известно нам, подключается через автомат защитного отключения

Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки \рис.6\

симисторный регулятор скорости вращения электродвигателя

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается \рис.8\, то-есть, выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления. Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

электронный модуль управления стиральной машины индезит

Подключение коллекторного двигателя — через реостат

либо от внешнего источника энергии, то-есть, от электрической сети

При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы \рис.10\

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

Приведенный пример \по электрическим наждакам\, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд.

Остается пожелать Вам успешного проведения ремонта для различных видов бытовой техники.

Статью писал технически не граматный дебил, схема бесколекторного двигателя а описание колекторного и наоборот.

Здравствуйте электрик. Какие схемы Вы подразумеваете с названиями: «безколлекторный и коллекторный двигатели»? По схемам дается пояснение подключения обмоток коллекторного двигателя. Представляться нужно не электриком, а указывать свое имя. У меня, к примеру, имеется имя, отчество и фамилия — Виктор Георгиевич Повага. Проживаю в Сибири, работаю по договору с Яндекс.Директ. В следующий раз, если от Вас поступит подобное письмецо, я обращусь в интернет-компании для Вашего розыска и затем, — перед судом будете доказывать «кто я такой». Всего Вам доброго «электрик».

Здравствуйте. Я электрике ничего не понимаю, но мне нужно подключить электромотор постоянного тока ИП-22, в обычную сеть

Устройство, плюсы и минусы

Электрические шуруповерты отличаются друг от друга принципом питания: бывают сетевые с питанием в 220 вольт и переносные, оснащенные аккумулятором. Кроме того, модели могут быть оснащены ударным механизмом. Других принципиальных новшеств не внедрено за последнее десятилетие за исключением одного – бесщеточный механизм.

Щеточный шуруповерт

Самый распространенный тип – коллекторный мотор установлен на большинстве моделей. Его принцип работы прост: обмотки переключаются механическим путем и в якорной цепи. Контакты – коллектор, а энергия передается благодаря подпружиненным щеткам.

Сильные стороны:

  • старая, надежная технология;
  • низкая стоимость деталей;
  • простота и понятность ремонта.

Недостатки:

  • коллектор приводят к потерям электроэнергии, а значит – более низкому КПД;
  • возникновение искр, нагрев мотора;
  • взаимозависимость оборотов и крутящего момента;
  • мощностные потери при реверсной работе;
  • быстрый износ;
  • потери оборотов при нагрузке.

Слабостей у щеточного мотора много, но их можно оправдать дешевыми комплектующими и простотой ремонта – это более доступный вариант.

Бесщеточный шуруповерт

С инверторными моделями ситуация обратная. Они эффективнее и более пригодны для работы. Преимущества:

  • возможность контроля частоты вращения: пользователь получает широкий диапазон настроек – оборот можно подправить, в зависимости от характера работы и обрабатываемой поверхности.
  • двигатель не предусматривает коллекторно-щеточный узел, а значит, инструмент будет реже ломаться (если его правильно эксплуатировать), а техническое обслуживание не вызовет проблем ввиду простоты конструкции;
  • модели эффективнее справляются с увеличенной нагрузкой, вызванной большим крутящим моментом;
  • электроэнергия аккумулятора, если это переносной шуруповерт, расходуется экономнее;
  • более высокий КПД – бесщеточный двигатель выдает 90%;
  • возможность эксплуатации инструмента в опасной среде: рядом с газовыми смесями и горючими веществами (инверторный двигатель работает без искры);
  • в прямом и реверсном режиме поддерживается одинаковая мощность;
  • повышенная нагрузка не приводит к снижению скорости вращения.

Слабые стороны:

  • высокая стоимость;
  • большие размеры корпуса, если сравнивать с щеточными моделями – это мешает работать на вытянутой руке или проникать в узкие места.

При выборе важно уделить внимание типу аккумулятора внутри шуруповерта. Если рассудить правильно, то инструмент долгие годы прослужит хозяину верой и правдой без потери в производительности

Правила установки и подключения

Выбирать и устанавливать коллектор лучше всего еще на этапе проектирования и монтажа отопительной системы.

Устанавливают такие промежуточные конструкции в помещениях, защищенных от избыточной влажности. Чаще всего для этих целей отводят место в коридоре, кладовой или гардеробной.

Коллекторный блок желательно размещать в специально предназначенном для этого металлическом шкафу, оснащенным в боковых стенках отверстиями под выведение труб

В продаже встречаются накладные и встраиваемые модели металлических шкафов. Каждая модель оснащена дверцей и выштамповкой по боковым сторонам.

За неимением возможности установить металлический шкафчик, поступают проще, фиксируя устройство прямо на стену. Нишу под обустройство коллекторного блока размещают на небольшой высоте относительно пола.

Общепринятой инструкции по монтажу коллекторных распределительных схем по сути нет. Но есть ряд основных моментов, относительно которых специалисты пришли к единому знаменателю:

  1. Наличие расширительного бака. Объем конструктивного элемента должен составлять не менее 10% от общего количества воды в системе.
  2. Наличие циркуляционного насоса для каждого проложенного контура. Относительно этого элемента не все специалисты едины во мнении. Но все же, если планируется задействовать несколько независимых контуров, для каждого из них стоит установить отдельный агрегат.

Перед циркуляционным насосом на магистрали обратной подачи размещают расширительный бак. Благодаря этому он становится менее уязвимым к турбулентности потоков воды, часто возникающих в этом месте.

Если же используется гидрострелка – бак монтируют перед основным насосом, основная задача которого состоит в том, чтобы обеспечивать циркуляцию на малом контуре.

Место расположения циркуляционного насоса не принципиально. Но, как показывает практика, ресурс устройства несколько выше именно на «обратке».

Главное при монтаже – расположить вал строго горизонтально. При несоблюдении этого условия первый же пузырь скопившегося воздуха оставит агрегат без охлаждения и смазки.

Сам процесс сборки и подключения коллекторной системы наглядно представлен в видео-блоке.

Подключение и управление

В основе работы данного вида двигателей лежат взаимодействующие магнитные поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.

Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.

Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет симистор, подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.

Читать также: Стабилизатор напряжения 220в своими руками схема

Пылесос, кофемолка, дрель, перфоратор, триммер — далеко не полный перечень оборудования, в котором используется преобразование электрической энергии в механическую для работы бытовых устройств.

Они содержат сложные технические узлы, требуют умелого обращения, периодического осмотра, правильного обслуживания. При небрежной работе возникают различные поломки.

Материал статьи представляет советы домашнему мастеру, работающему с электрическими инструментами или планирующему самостоятельный ремонт электродвигателя с щеточным механизмом и коллектором. Текст наглядно дополняется схемами, картинками и видеороликом.

Предоставленная информация собрана с целью привлечь внимание пользователей к правилам эксплуатации бытовых приборов с коллекторным двигателем. Она поможет осознанно фиксировать возникающие дефекты работающей схемы, оперативно устранять их

Коллекторный тип разводки труб — особенности и нюансы

Коллекторный тип разводки труб в системах отопления и водоснабжения является более перспективным, чем классический вариант на тройниках. Ведь главная выгода коллекторной схемы – возможность точной регулировки напора транспортируемой жидкости – очевидна и специалистам по трубопроводам, и домовладельцам.

Впрочем, лучевая схема (она же коллекторная разводка) имеет и оборотную сторону: она очень сложна и на ее реализацию потребуется намного больше труб и фитингов.

Ну, а мы готовы лишь подтолкнуть процесс принятия окончательного решения, описав нашим читателям структуру коллекторных схем и схему монтажа подобных систем.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

Преимущества:лучшее соотношение цена/качество
высокий момент на низких оборотах
быстрый отклик на изменение напряжения

постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

  • По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы .

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения

питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается.При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

Преимущества:практически постоянный момент на низких оборотах
хорошие регулировочные свойства
отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)

Недостатки:дороже КДПТ ПМ
двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя .

Коллекторные vs асинхронные двигатели

Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.

Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

  1. Пылесос, стиральная машина.
  2. Болгарка, дрель, электрический ручной инструмент.

Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

  • Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
  • Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.

Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

Преимущества и недостатки

Сначала нужно поговорить о недостатках коллекторной системы. Почему же не во всех квартирах устанавливается коллекторная разводка водопроводных труб? Тут ответ довольно простой: приходится тратить много средств на создание системы. Работ предстоит выполнить намного больше, чем при создании тройниковой системы.

Так, для запитывания умывальника и унитаза, например, понадобится при тройниковой разводке пять метров труб, а при коллекторной разводке – девять метров труб. Кроме того, специальная запорная арматура для коллекторной разводки стоит дорого.

Если ремонт в квартире не связан с глобальной заменой водопроводных труб, то ощущается разница между одной трубой на стене и шестью трубами.

Потому чаще всего коллекторную систему создают тогда, когда меняется весь водопровод и есть возможность спрятать трубы в специальных коробах или в стене.
Несомненно, коллекторная разводка водопроводных труб имеет преимущества.

В маленькой квартире такая особенность может ничего не говорить хозяину. Однако, когда речь идет о гостиницах, больших заведениях, то такая система является настоящей находкой.

И как же тогда быть, если в гостинице, например, в одном из номеров прорвало трубу? Отключать всю гостиницу от водоснабжения – это самоубийство, особенно если заведение имеет высокую «звездность». Рейтинг гостиницы упадет в тот момент, когда будет отключена вода. А вот если с коллектора закрыть в один номер подачу воды – это другое дело.

Особую пользу коллекторная система оказывает на системе отопления. Например, можно сбавить температуру на одном из радиаторов с помощью дроссельной заслонки. В системе водоснабжения можно ограничить использование воды, например, на умывальнике, где часто любят баловаться дети. Что, если они оставят кран открытым и уйдут?

Нет, квартиру не затопит, но на счетчике за несколько часов, пока не обнаружат открытый кран взрослые, сможет набежать порядка семи – восьми кубов воды. Если кран будет открыт наполовину, то цифры на счетчике будут в два раза меньше.

Можно представить еще одну ситуацию. При тройниковой разводке подключен душ и унитаз. Вы купаетесь в душе, горячую воду разбавляет напор холодной воды. Потом в это время ваша жена сходила в туалет и смыла унитаз водой из бачка.

Что же будет дальше? Напор холодной воды сразу же распределится поровну на душ и унитаз. То, что в унитаз вода будет набираться медленно – не проблема. Но вот попасть под кипяток из душа – не очень приятно. В случае коллекторной разводки подача воды на душ и унитаз будет одинаковой при любом раскладе.

Устройство и конструкция впускного коллектора

Один из важнейших факторов, влияющих на эффективность мотора,– это форма коллектора. Он представлен в виде ряда труб, соединенных в один патрубок. На конце патрубка устанавливается воздушный фильтр.

Количество отводов на другом конце зависит от числа цилиндров в моторе. Впускной коллектор подсоединяется к газораспределительному механизму в районе впускных клапанов. Одним из недостатков ВК является конденсация топлива на его стенках. Для предотвращения такого эффекта электростатической реакции инженерами разработана такая форма труб, которая образует турбулентность внутри магистрали. По этой причине внутренняя часть труб специально оставляется шероховатой.

Форма патрубков коллектора должна иметь конкретные параметры. Во-первых, тракт не должен иметь острых углов. Из-за этого топливо будет оставаться на поверхности труб, что приведет к засорению полости и изменит параметры подачи воздуха.

Во-вторых, самой распространенной проблемой впускного тракта, с которой продолжают бороться инженеры, является эффект Гельмгольца. Когда открывается впускной клапан, воздух устремляется к цилиндру. После его закрытия поток по инерции продолжает движение, а затем резко возвращается. Из-за этого создается давление сопротивления, которое мешает движению очередной порции во втором патрубке.

Эти две причины заставляют автомобильных производителей разрабатывать улучшенные коллекторы, которые обеспечивали бы плавную работу системы впуска.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Виды впускных коллекторов

Существуют такие виды впускных коллекторов:

На современных двигателях довольно широко распространены коллекторы с точечным впрыском топлива. В такой модификации топливо подается при помощи электромагнитных форсунок, установленных в каждой из его труб-каналов.


Принципиальная схема впускного коллектора с точечным впрыском топлива

Впускной коллектор, как и двигатель в целом, продуктивно работает в определенном диапазоне оборотов. Устройство и тип установленного коллектора зависит от компоновки блока цилиндров, от целевой направленности двигателя и от конструктивных решений в целом.

Все выше перечисленные коллекторы, делятся на две группы:

Одноплоскостной коллектор подает топливовоздушную смесь через один общий канал, многоплоскостной же изначально делит поток смеси на два потока.


Одноплоскостной коллектор

Как правило, двигатели с двухплоскостным коллектором выдают больше мощности на низких и средних оборотах в пределах 2000-4000 об/мин. На высоких же — из-за образующихся завихрений мощность будет несколько ниже.


Двухплоскостной коллектор

Коллектор с общей камерой без перегородок раскрывает свой потенциал на оборотах от 5000 и выше.

Проверка обмотки

В большинстве случаев проблема может быть обнаружена по внешнему виду и характерному запаху (см. рис. 1). Если эмпирическим путем неисправность установить не удается, переходим к диагностике, которая начинается с прозвонки на обрыв. Если таковая обнаруживается, выполняется разборка двигателя (этот процесс будет описан отдельно) и тщательный осмотр соединений. Когда дефект не обнаружен, можно констатировать обрыв в одной из катушек, что требует перемотки.

Если прозвонка не показала обрыва, следует переходить к измерению сопротивления обмоток, при этом учитывать следующие нюансы:

  • сопротивление изоляции катушек на корпус должно стремиться к бесконечности;
  • у трехфазного привода обмотки должны показывать одинаковое сопротивление;
  • у однофазных машин сопротивление пусковых катушек превышает данные показания рабочих обмоток.

Помимо этого следует учитывать, что сопротивление статорных катушек довольно низкое, поэтому для его измерения бессмысленно использовать приборы с низким классом точности, к таковым относятся большинство мультиметров. Исправить ситуацию можно собрав несложную схему на потенциометре с добавлением дополнительного источника питания, например автомобильной аккумуляторной батареи.

Методика измерений следующая:

  1. Подключается катушка привода к схеме, представленной выше.
  2. Потенциометром устанавливается ток 1 А.
  3. Производится расчет сопротивления катушке по следующей формуле: , где RК и UПИТ были описаны на рисунке 2. R – сопротивление потенциометра, – падение напряжения на измеряемой катушке (показывает вольтметр на схеме).

Стоит также рассказать о методике, позволяющей определить место межвиткового замыкания. Это делается следующим образом: